org.scalatest

FunSpec

trait FunSpec extends Suite

Trait that facilitates a “behavior-driven” style of development (BDD), in which tests are combined with text that specifies the behavior the tests verify. (Note: In BDD, the word example is usually used instead of test. The word test will not appear in your code if you use WordSpec, so if you prefer the word example you can use it. However, in this documentation the word test will be used, for clarity and to be consistent with the rest of ScalaTest.) Here's an example FunSpec:

import org.scalatest.FunSpec
import scala.collection.mutable.Stack

class StackSpec extends FunSpec {
describe("A Stack") {
it("should pop values in last-in-first-out order") { val stack = new Stack[Int] stack.push(1) stack.push(2) assert(stack.pop() === 2) assert(stack.pop() === 1) }
it("should throw NoSuchElementException if an empty stack is popped") { val emptyStack = new Stack[String] intercept[NoSuchElementException] { emptyStack.pop() } } } }

A FunSpec contains describe clauses and tests. You define a describe clause with describe, and a test with it. Both describe and it are methods, defined in FunSpec, which will be invoked by the primary constructor of StackSpec. A describe clause names, or gives more information about, the subject (class or other entity) you are specifying and testing. In the previous example, "A Stack" is the subject under specification and test. With each test you provide a string (the spec text) that specifies one bit of behavior of the subject, and a block of code that tests that behavior. You place the spec text between the parentheses, followed by the test code between curly braces. The test code will be wrapped up as a function passed as a by-name parameter to it, which will register the test for later execution.

A FunSpec's lifecycle has two phases: the registration phase and the ready phase. It starts in registration phase and enters ready phase the first time run is called on it. It then remains in ready phase for the remainder of its lifetime.

Tests can only be registered with the it method while the FunSpec is in its registration phase. Any attempt to register a test after the FunSpec has entered its ready phase, i.e., after run has been invoked on the FunSpec, will be met with a thrown TestRegistrationClosedException. The recommended style of using FunSpec is to register tests during object construction as is done in all the examples shown here. If you keep to the recommended style, you should never see a TestRegistrationClosedException.

When you execute a FunSpec, it will send Formatters in the events it sends to the Reporter. ScalaTest's built-in reporters will report these events in such a way that the output is easy to read as an informal specification of the subject being tested. For example, if you ran StackSpec from within the Scala interpreter:

scala> (new StackSpec).execute()

You would see:

A Stack
- should pop values in last-in-first-out order
- should throw NoSuchElementException if an empty stack is popped

Note: Trait FunSpec's syntax is in great part inspired by RSpec, a Ruby BDD framework.

See also: Getting started with FunSpec.

Ignored tests

To support the common use case of “temporarily” disabling a test, with the good intention of resurrecting the test at a later time, FunSpec provides registration methods that start with ignore instead of it. For example, to temporarily disable the test with the name "should pop values in last-in-first-out order", just change “it” into “ignore,” like this:

import org.scalatest.FunSpec
import scala.collection.mutable.Stack

class StackSpec extends FunSpec {
describe("A Stack") {
ignore("should pop values in last-in-first-out order") { val stack = new Stack[Int] stack.push(1) stack.push(2) assert(stack.pop() === 2) assert(stack.pop() === 1) }
it("should throw NoSuchElementException if an empty stack is popped") { val emptyStack = new Stack[String] intercept[NoSuchElementException] { emptyStack.pop() } } } }

If you run this version of StackSpec with:

scala> (new StackSpec).execute()

It will run only the second test and report that the first test was ignored:

A Stack
- should pop values in last-in-first-out order !!! IGNORED !!!
- should throw NoSuchElementException if an empty stack is popped

Informers

One of the parameters to the run method is a Reporter, which will collect and report information about the running suite of tests. Information about suites and tests that were run, whether tests succeeded or failed, and tests that were ignored will be passed to the Reporter as the suite runs. Most often the reporting done by default by FunSuite's methods will be sufficient, but occasionally you may wish to provide custom information to the Reporter from a test. For this purpose, an Informer that will forward information to the current Reporter is provided via the info parameterless method. You can pass the extra information to the Informer via one of its apply methods. The Informer will then pass the information to the Reporter via an InfoProvided event. Here's an example:

import org.scalatest.FunSpec

class ExampleSpec extends FunSpec {
describe("The Scala language") {
it("should add correctly") { val sum = 1 + 1 assert(sum === 2) info("Addition seems to work") }
it("should subtract correctly") { val diff = 7 - 2 assert(diff === 5) } } }

If you run this FunSpec from the interpreter, you will see the following message included in the printed report:

ExampleSpec:
The Scala language
- should add correctly
  + Addition seems to work
- should subtract correctly

Pending tests

A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException.

Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality, has not yet been implemented.

You can mark a test as pending in FunSpec by placing "(pending)" after the test name, like this:

import org.scalatest.FunSpec
import scala.collection.mutable.Stack

class StackSpec extends FunSpec {
describe("A Stack") {
it("should pop values in last-in-first-out order") { val stack = new Stack[Int] stack.push(1) stack.push(2) assert(stack.pop() === 2) assert(stack.pop() === 1) }
it("should throw NoSuchElementException if an empty stack is popped") (pending) } }

(Note: "(pending)" is the body of the test. Thus the test contains just one statement, an invocation of the pending method, which throws TestPendingException.) If you run this version of StackSpec with:

scala> (new StackSpec).execute()

It will run both tests, but report that the test named "A stack should pop values in last-in-first-out order" is pending. You'll see:

A Stack
- should pop values in last-in-first-out order
- should throw NoSuchElementException if an empty stack is popped (pending)

Tagging tests

A FunSpec's tests may be classified into groups by tagging them with string names. As with any suite, when executing a FunSpec, groups of tests can optionally be included and/or excluded. To tag a FunSpec's tests, you pass objects that extend abstract class org.scalatest.Tag to the methods that register tests, it and ignore. Class Tag takes one parameter, a string name. If you have created Java annotation interfaces for use as group names in direct subclasses of org.scalatest.Suite, then you will probably want to use group names on your FunSpecs that match. To do so, simply pass the fully qualified names of the Java interfaces to the Tag constructor. For example, if you've defined Java annotation interfaces with fully qualified names, com.mycompany.tags.SlowTest and com.mycompany.tags.DbTest, then you could create matching groups for FunSpecs like this:

import org.scalatest.Tag

object SlowTest extends Tag("com.mycompany.tags.SlowTest") object DbTest extends Tag("com.mycompany.tags.DbTest")

Given these definitions, you could place FunSpec tests into groups like this:

import org.scalatest.FunSpec

class ExampleSpec extends FunSpec {
it("should add correctly", SlowTest) { val sum = 1 + 1 assert(sum === 2) }
it("should subtract correctly", SlowTest, DbTest) { val diff = 4 - 1 assert(diff === 3) } }

This code marks both tests with the com.mycompany.tags.SlowTest tag, and test "should subtract correctly" with the com.mycompany.tags.DbTest tag.

The run method takes a Filter, whose constructor takes an optional Set[String] called tagsToInclude and a Set[String] called tagsToExclude. If tagsToInclude is None, all tests will be run except those those belonging to tags listed in the tagsToExclude Set. If tagsToInclude is defined, only tests belonging to tags mentioned in the tagsToInclude set, and not mentioned in tagsToExclude, will be run.

Shared fixtures

A test fixture is objects or other artifacts (such as files, sockets, database connections, etc.) used by tests to do their work. If a fixture is used by only one test method, then the definitions of the fixture objects can be local to the method, such as the objects assigned to sum and diff in the previous ExampleSpec examples. If multiple methods need to share an immutable fixture, one approach is to assign them to instance variables.

In some cases, however, shared mutable fixture objects may be changed by test methods such that they need to be recreated or reinitialized before each test. Shared resources such as files or database connections may also need to be created and initialized before, and cleaned up after, each test. JUnit 3 offered methods setUp and tearDown for this purpose. In ScalaTest, you can use the BeforeAndAfterEach trait, which will be described later, to implement an approach similar to JUnit's setUp and tearDown, however, this approach usually involves reassigning vars or mutating objects between tests. Before going that route, you may wish to consider some more functional approaches that avoid side effects.

Calling create-fixture methods

One approach is to write one or more create-fixture methods that return a new instance of a needed fixture object (or an holder object containing multiple needed fixture objects) each time it is called. You can then call a create-fixture method at the beginning of each test method that needs the fixture, storing the returned object or objects in local variables. Here's an example:

import org.scalatest.FunSpec
import collection.mutable.ListBuffer

class ExampleSpec extends FunSpec {
def fixture = new { val builder = new StringBuilder("ScalaTest is ") val buffer = new ListBuffer[String] }
describe("Testing") {
it("should be easy") { val f = fixture f.builder.append("easy!") assert(f.builder.toString === "ScalaTest is easy!") assert(f.buffer.isEmpty) f.buffer += "sweet" }
it("should be fun") { val f = fixture f.builder.append("fun!") assert(f.builder.toString === "ScalaTest is fun!") assert(f.buffer.isEmpty) } } }

The “f.” in front of each use of a fixture object provides a visual indication of which objects are part of the fixture, but if you prefer, you can import the the members with “import f._” and use the names directly.

Instantiating fixture traits

A related technique is to place the fixture objects in a fixture trait and run your test code in the context of a new anonymous class instance that mixes in the fixture trait, like this:

import org.scalatest.FunSpec
import collection.mutable.ListBuffer

class ExampleSpec extends FunSpec {
trait Fixture { val builder = new StringBuilder("ScalaTest is ") val buffer = new ListBuffer[String] }
describe("Testing") {
it("should be easy") { new Fixture { builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" } }
it("should be fun") { new Fixture { builder.append("fun!") assert(builder.toString === "ScalaTest is fun!") assert(buffer.isEmpty) } } } }

Mixing in OneInstancePerTest

If every test method requires the same set of mutable fixture objects, one other approach you can take is make them simply vals and mix in trait OneInstancePerTest. If you mix in OneInstancePerTest, each test will be run in its own instance of the Suite, similar to the way JUnit tests are executed. Here's an example:

import org.scalatest.FunSpec
import org.scalatest.OneInstancePerTest
import collection.mutable.ListBuffer

class ExampleSpec extends FunSpec with OneInstancePerTest {
val builder = new StringBuilder("ScalaTest is ") val buffer = new ListBuffer[String]
describe("Testing") {
it("should be easy") { builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" }
it("should be fun") { builder.append("fun!") assert(builder.toString === "ScalaTest is fun!") assert(buffer.isEmpty) } } }

Although the create-fixture, fixture-trait, and OneInstancePerTest approaches take care of setting up a fixture before each test, they don't address the problem of cleaning up a fixture after the test completes. In this situation, you'll need to either use side effects or the loan pattern.

Mixing in BeforeAndAfter

One way to use side effects is to mix in the BeforeAndAfter trait. With this trait you can denote a bit of code to run before each test with before and/or after each test each test with after, like this:

import org.scalatest.FunSpec
import org.scalatest.BeforeAndAfter
import collection.mutable.ListBuffer

class ExampleSpec extends FunSpec with BeforeAndAfter {
val builder = new StringBuilder val buffer = new ListBuffer[String]
before { builder.append("ScalaTest is ") }
after { builder.clear() buffer.clear() }
describe("Testing") {
it("should be easy") { builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" }
it("should be fun") { builder.append("fun!") assert(builder.toString === "ScalaTest is fun!") assert(buffer.isEmpty) } } }

Overriding withFixture(NoArgTest)

An alternate way to take care of setup and cleanup via side effects is to override withFixture. Trait Suite's implementation of runTest, which is inherited by this trait, passes a no-arg test function to withFixture. It is withFixture's responsibility to invoke that test function. Suite's implementation of withFixture simply invokes the function, like this:

// Default implementation
protected def withFixture(test: NoArgTest) {
  test()
}

You can, therefore, override withFixture to perform setup before, and cleanup after, invoking the test function. If you have cleanup to perform, you should invoke the test function inside a try block and perform the cleanup in a finally clause. Here's an example:

import org.scalatest.FunSpec
import collection.mutable.ListBuffer

class ExampleSpec extends FunSpec {
val builder = new StringBuilder val buffer = new ListBuffer[String]
override def withFixture(test: NoArgTest) { builder.append("ScalaTest is ") // perform setup try { test() // invoke the test function } finally { builder.clear() // perform cleanup buffer.clear() } }
describe("Testing") {
it("should be easy") { builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" }
it("should be fun") { builder.append("fun!") assert(builder.toString === "ScalaTest is fun!") assert(buffer.isEmpty) buffer += "clear" } } }

Note that the NoArgTest passed to withFixture, in addition to an apply method that executes the test, also includes the test name as well as the config map passed to runTest. Thus you can also use the test name and configuration objects in withFixture.

The reason you should perform cleanup in a finally clause is that withFixture is called by runTest, which expects an exception to be thrown to indicate a failed test. Thus when you invoke the test function inside withFixture, it may complete abruptly with an exception. The finally clause will ensure the fixture cleanup happens as that exception propagates back up the call stack to runTest.

Overriding withFixture(OneArgTest)

To use the loan pattern, you can extend org.scalatest.fixture.FunSpec (from the org.scalatest.fixture package) instead of FunSpec. Each test in a org.scalatest.fixture.FunSpec takes a fixture as a parameter, allowing you to pass the fixture into the test. You must indicate the type of the fixture parameter by specifying FixtureParam, and implement a withFixture method that takes a OneArgTest. This withFixture method is responsible for invoking the one-arg test function, so you can perform fixture set up before, and clean up after, invoking and passing the fixture into the test function. Here's an example:

import org.scalatest.fixture
import java.io.FileWriter
import java.io.File

class ExampleSpec extends fixture.FunSpec {
final val tmpFile = "temp.txt"
type FixtureParam = FileWriter
def withFixture(test: OneArgTest) {
val writer = new FileWriter(tmpFile) // set up the fixture try { test(writer) // "loan" the fixture to the test } finally { writer.close() // clean up the fixture } }
describe("Testing") {
it("should be easy") { writer => writer.write("Hello, test!") writer.flush() assert(new File(tmpFile).length === 12) }
it("should be fun") { writer => writer.write("Hi, test!") writer.flush() assert(new File(tmpFile).length === 9) } } }

For more information, see the documentation for org.scalatest.fixture.FunSpec.

Providing different fixtures to different tests

If different tests in the same FunSpec require different fixtures, you can combine the previous techniques and provide each test with just the fixture or fixtures it needs. Here's an example in which a StringBuilder and a ListBuffer are provided via fixture traits, and file writer (that requires cleanup) is provided via the loan pattern:

import java.io.FileWriter
import java.io.File
import collection.mutable.ListBuffer
import org.scalatest.FunSpec

class ExampleSpec extends FunSpec {
final val tmpFile = "temp.txt"
trait Builder { val builder = new StringBuilder("ScalaTest is ") }
trait Buffer { val buffer = ListBuffer("ScalaTest", "is") }
def withWriter(testCode: FileWriter => Any) { val writer = new FileWriter(tmpFile) // set up the fixture try { testCode(writer) // "loan" the fixture to the test } finally { writer.close() // clean up the fixture } }
describe("Testing") {
it("should be productive") { // This test needs the StringBuilder fixture new Builder { builder.append("productive!") assert(builder.toString === "ScalaTest is productive!") } }
it("should be readable") { // This test needs the ListBuffer[String] fixture new Buffer { buffer += ("readable!") assert(buffer === List("ScalaTest", "is", "readable!")) } }
it("should be friendly") { // This test needs the FileWriter fixture withWriter { writer => writer.write("Hello, user!") writer.flush() assert(new File(tmpFile).length === 12) } }
it("should be clear and concise") { // This test needs the StringBuilder and ListBuffer new Builder with Buffer { builder.append("clear!") buffer += ("concise!") assert(builder.toString === "ScalaTest is clear!") assert(buffer === List("ScalaTest", "is", "concise!")) } }
it("should be composable") { // This test needs all three fixtures new Builder with Buffer { builder.append("clear!") buffer += ("concise!") assert(builder.toString === "ScalaTest is clear!") assert(buffer === List("ScalaTest", "is", "concise!")) withWriter { writer => writer.write(builder.toString) writer.flush() assert(new File(tmpFile).length === 19) } } } } }

In the previous example, should be productive uses only the StringBuilder fixture, so it just instantiates a new Builder, whereas should be readable uses only the ListBuffer fixture, so it just intantiates a new Buffer. should be friendly needs just the FileWriter fixture, so it invokes withWriter, which prepares and passes a FileWriter to the test (and takes care of closing it afterwords).

Two tests need multiple fixtures: should be clear and concise needs both the StringBuilder and the ListBuffer, so it instantiates a class that mixes in both fixture traits with new Builder with Buffer. should be composable needs all three fixtures, so in addition to new Builder with Buffer it also invokes withWriter, wrapping just the of the test code that needs the fixture.

Note that in this case, the loan pattern is being implemented via the withWriter method that takes a function, not by overriding org.scalatest.fixture.FunSpec's withFixture(OneArgTest) method. org.scalatest.fixture.FunSpec makes the most sense if all (or at least most) tests need the same fixture, whereas in this Suite only two tests need the FileWriter.

In the previous example, the withWriter method passed an object into the tests. Passing fixture objects into tests is generally a good idea when possible, but sometimes a side affect is unavoidable. For example, if you need to initialize a database running on a server across a network, your with-fixture method will likely have nothing to pass. In such cases, simply create a with-fixture method that takes a by-name parameter and performs setup and cleanup via side effects, like this:

def withDataInDatabase(test: => Any) {
  // initialize the database across the network
  try {
    test // "loan" the initialized database to the test
  }
  finally {
    // clean up the database
  }
}

You can then use it like:

describe("A user") {
  it("should be able to log in") {
    withDataInDatabase {
      // test user logging in scenario
    }
  }
}

Composing stackable fixture traits

In larger projects, teams often end up with several different fixtures that test classes need in different combinations, and possibly initialized (and cleaned up) in different orders. A good way to accomplish this in ScalaTest is to factor the individual fixtures into traits that can be composed using the stackable trait pattern. This can be done, for example, by placing withFixture methods in several traits, each of which call super.withFixture. Here's an example in which the StringBuilder and ListBuffer[String] fixtures used in the previous examples have been factored out into two stackable fixture traits named Builder and Buffer:

import org.scalatest.FunSpec
import org.scalatest.AbstractSuite
import collection.mutable.ListBuffer

trait Builder extends AbstractSuite { this: Suite =>
val builder = new StringBuilder
abstract override def withFixture(test: NoArgTest) { builder.append("ScalaTest is ") try { super.withFixture(test) // To be stackable, must call super.withFixture } finally { builder.clear() } } }
trait Buffer extends AbstractSuite { this: Suite =>
val buffer = new ListBuffer[String]
abstract override def withFixture(test: NoArgTest) { try { super.withFixture(test) // To be stackable, must call super.withFixture } finally { buffer.clear() } } }
class ExampleSpec extends FunSpec with Builder with Buffer {
describe("Testing") {
it("should be easy") { builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" }
it("should be fun") { builder.append("fun!") assert(builder.toString === "ScalaTest is fun!") assert(buffer.isEmpty) buffer += "clear" } } }

By mixing in both the Builder and Buffer traits, ExampleSpec gets both fixtures, which will be initialized before each test and cleaned up after. The order the traits are mixed together determines the order of execution. In this case, Builder is "super" to Buffer. If you wanted Buffer to be "super" to Builder, you need only switch the order you mix them together, like this:

class Example2Spec extends FunSpec with Buffer with Builder

And if you only need one fixture you mix in only that trait:

class Example3Spec extends FunSpec with Builder

Another way to create stackable fixture traits is by extending the BeforeAndAfterEach and/or BeforeAndAfterAll traits. BeforeAndAfterEach has a beforeEach method that will be run before each test (like JUnit's setUp), and an afterEach method that will be run after (like JUnit's tearDown). Similarly, BeforeAndAfterAll has a beforeAll method that will be run before all tests, and an afterAll method that will be run after all tests. Here's what the previously shown example would look like if it were rewritten to use the BeforeAndAfterEach methods instead of withFixture:

import org.scalatest.FunSpec
import org.scalatest.BeforeAndAfterEach
import collection.mutable.ListBuffer

trait Builder extends BeforeAndAfterEach { this: Suite =>
val builder = new StringBuilder
override def beforeEach() { builder.append("ScalaTest is ") super.beforeEach() // To be stackable, must call super.beforeEach }
override def afterEach() { try { super.afterEach() // To be stackable, must call super.afterEach } finally { builder.clear() } } }
trait Buffer extends BeforeAndAfterEach { this: Suite =>
val buffer = new ListBuffer[String]
override def afterEach() { try { super.afterEach() // To be stackable, must call super.afterEach } finally { buffer.clear() } } }
class ExampleSpec extends FunSpec with Builder with Buffer {
describe("Testing") {
it("should be easy") { builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" }
it("should be fun") { builder.append("fun!") assert(builder.toString === "ScalaTest is fun!") assert(buffer.isEmpty) buffer += "clear" } } }

To get the same ordering as withFixture, place your super.beforeEach call at the end of each beforeEach method, and the super.afterEach call at the beginning of each afterEach method, as shown in the previous example. It is a good idea to invoke super.afterEach in a try block and perform cleanup in a finally clause, as shown in the previous example, because this ensures the cleanup code is performed even if super.afterAll throws an exception.

One difference to bear in mind between the before-and-after traits and the withFixture methods, is that if a withFixture method completes abruptly with an exception, it is considered a failed test. By contrast, if any of the methods on the before-and-after traits (i.e., before and after of BeforeAndAfter, beforeEach and afterEach of BeforeAndAfterEach, and beforeAll and afterAll of BeforeAndAfterAll) complete abruptly, it is considered a failed suite, which will result in a SuiteAborted event.

Shared tests

Sometimes you may want to run the same test code on different fixture objects. In other words, you may want to write tests that are "shared" by different fixture objects. To accomplish this in a FunSpec, you first place shared tests in behavior functions. These behavior functions will be invoked during the construction phase of any FunSpec that uses them, so that the tests they contain will be registered as tests in that FunSpec. For example, given this stack class:

import scala.collection.mutable.ListBuffer

class Stack[T] {
val MAX = 10 private val buf = new ListBuffer[T]
def push(o: T) { if (!full) buf.prepend(o) else throw new IllegalStateException("can't push onto a full stack") }
def pop(): T = { if (!empty) buf.remove(0) else throw new IllegalStateException("can't pop an empty stack") }
def peek: T = { if (!empty) buf(0) else throw new IllegalStateException("can't pop an empty stack") }
def full: Boolean = buf.size == MAX def empty: Boolean = buf.size == 0 def size = buf.size
override def toString = buf.mkString("Stack(", ", ", ")") }

You may want to test the Stack class in different states: empty, full, with one item, with one item less than capacity, etc. You may find you have several tests that make sense any time the stack is non-empty. Thus you'd ideally want to run those same tests for three stack fixture objects: a full stack, a stack with a one item, and a stack with one item less than capacity. With shared tests, you can factor these tests out into a behavior function, into which you pass the stack fixture to use when running the tests. So in your FunSpec for stack, you'd invoke the behavior function three times, passing in each of the three stack fixtures so that the shared tests are run for all three fixtures. You can define a behavior function that encapsulates these shared tests inside the FunSpec that uses them. If they are shared between different FunSpecs, however, you could also define them in a separate trait that is mixed into each FunSpec that uses them.

For example, here the nonEmptyStack behavior function (in this case, a behavior method) is defined in a trait along with another method containing shared tests for non-full stacks:

trait StackBehaviors { this: FunSpec =>

def nonEmptyStack(newStack: => Stack[Int], lastItemAdded: Int) {
it("should be non-empty") { assert(!newStack.empty) }
it("should return the top item on peek") { assert(newStack.peek === lastItemAdded) }
it("should not remove the top item on peek") { val stack = newStack val size = stack.size assert(stack.peek === lastItemAdded) assert(stack.size === size) }
it("should remove the top item on pop") { val stack = newStack val size = stack.size assert(stack.pop === lastItemAdded) assert(stack.size === size - 1) } }
def nonFullStack(newStack: => Stack[Int]) {
it("should not be full") { assert(!newStack.full) }
it("should add to the top on push") { val stack = newStack val size = stack.size stack.push(7) assert(stack.size === size + 1) assert(stack.peek === 7) } } }

Given these behavior functions, you could invoke them directly, but FunSpec offers a DSL for the purpose, which looks like this:

it should behave like nonEmptyStack(stackWithOneItem, lastValuePushed)
it should behave like nonFullStack(stackWithOneItem)

If you prefer to use an imperative style to change fixtures, for example by mixing in BeforeAndAfterEach and reassigning a stack var in beforeEach, you could write your behavior functions in the context of that var, which means you wouldn't need to pass in the stack fixture because it would be in scope already inside the behavior function. In that case, your code would look like this:

it should behave like nonEmptyStack // assuming lastValuePushed is also in scope inside nonEmptyStack
it should behave like nonFullStack

The recommended style, however, is the functional, pass-all-the-needed-values-in style. Here's an example:

class SharedTestExampleSpec extends FunSpec with StackBehaviors {

// Stack fixture creation methods def emptyStack = new Stack[Int]
def fullStack = { val stack = new Stack[Int] for (i <- 0 until stack.MAX) stack.push(i) stack }
def stackWithOneItem = { val stack = new Stack[Int] stack.push(9) stack }
def stackWithOneItemLessThanCapacity = { val stack = new Stack[Int] for (i <- 1 to 9) stack.push(i) stack }
val lastValuePushed = 9
describe("A Stack") {
describe("(when empty)") {
it("should be empty") { assert(emptyStack.empty) }
it("should complain on peek") { intercept[IllegalStateException] { emptyStack.peek } }
it("should complain on pop") { intercept[IllegalStateException] { emptyStack.pop } } }
describe("(with one item)") { it should behave like nonEmptyStack(stackWithOneItem, lastValuePushed) it should behave like nonFullStack(stackWithOneItem) }
describe("(with one item less than capacity)") { it should behave like nonEmptyStack(stackWithOneItemLessThanCapacity, lastValuePushed) it should behave like nonFullStack(stackWithOneItemLessThanCapacity) }
describe("(full)") {
it("should be full") { assert(fullStack.full) }
it should behave like nonEmptyStack(fullStack, lastValuePushed)
it("should complain on a push") { intercept[IllegalStateException] { fullStack.push(10) } } } } }

If you load these classes into the Scala interpreter (with scalatest's JAR file on the class path), and execute it, you'll see:

scala> (new StackSpec).execute()
A Stack (when empty)
- should be empty
- should complain on peek
- should complain on pop
A Stack (with one item)
- should be non-empty
- should return the top item on peek
- should not remove the top item on peek
- should remove the top item on pop
- should not be full
- should add to the top on push
A Stack (with one item less than capacity)
- should be non-empty
- should return the top item on peek
- should not remove the top item on peek
- should remove the top item on pop
- should not be full
- should add to the top on push
A Stack (full)
- should be full
- should be non-empty
- should return the top item on peek
- should not remove the top item on peek
- should remove the top item on pop
- should complain on a push

One thing to keep in mind when using shared tests is that in ScalaTest, each test in a suite must have a unique name. If you register the same tests repeatedly in the same suite, one problem you may encounter is an exception at runtime complaining that multiple tests are being registered with the same test name. A good way to solve this problem in a FunSpec is to surround each invocation of a behavior function with a describe clause, which will prepend a string to each test name. For example, the following code in a FunSpec would register a test with the name "A Stack (when empty) should be empty":

describe("A Stack") {

describe("(when empty)") {
it("should be empty") { assert(emptyStack.empty) } // ...

If the "should be empty" test was factored out into a behavior function, it could be called repeatedly so long as each invocation of the behavior function is inside a different set of describe clauses.

Self Type
FunSpec
Linear Supertypes
Suite, Serializable, AbstractSuite, Assertions, AnyRef, Any
Known Subclasses
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Hide All
  2. Show all
  1. FunSpec
  2. Suite
  3. Serializable
  4. AbstractSuite
  5. Assertions
  6. AnyRef
  7. Any
Visibility
  1. Public
  2. All

Type Members

  1. class Equalizer extends AnyRef

    Class used via an implicit conversion to enable any two objects to be compared with === in assertions in tests.

  2. class ItWord extends AnyRef

    Class that, via an instance referenced from the it field, supports test (and shared test) registration in FunSpecs.

  3. trait NoArgTest extends () ⇒ Unit

    A test function taking no arguments, which also provides a test name and config map.

Value Members

  1. def != (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  2. def != (arg0: Any): Boolean

    Attributes
    final
    Definition Classes
    Any
  3. def ## (): Int

    Attributes
    final
    Definition Classes
    AnyRef → Any
  4. def == (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  5. def == (arg0: Any): Boolean

    Attributes
    final
    Definition Classes
    Any
  6. def asInstanceOf [T0] : T0

    Attributes
    final
    Definition Classes
    Any
  7. def assert (o: Option[String]): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b)
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    Definition Classes
    Assertions
  8. def assert (o: Option[String], clue: Any): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some, as well as the String obtained by invoking toString on the specified message, included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b, "extra info reported if assertion fails")
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  9. def assert (condition: Boolean, clue: Any): Unit

    Assert that a boolean condition, described in String message, is true.

    Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with the String obtained by invoking toString on the specified message as the exception's detail message.

    condition

    the boolean condition to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
  10. def assert (condition: Boolean): Unit

    Assert that a boolean condition is true.

    Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

    condition

    the boolean condition to assert

    Definition Classes
    Assertions
  11. val behave : BehaveWord

    Supports shared test registration in FunSpecs.

    Supports shared test registration in FunSpecs.

    This field supports syntax such as the following:

    it should behave like nonFullStack(stackWithOneItem)
              ^
    

    For more information and examples of the use of <cod>behave, see the Shared tests section in the main documentation for this trait.

    Attributes
    protected
  12. def clone (): AnyRef

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  13. implicit def convertToEqualizer (left: Any): Equalizer

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    For more information on this mechanism, see the documentation for Equalizer.

    Because trait Suite mixes in Assertions, this implicit conversion will always be available by default in ScalaTest Suites. This is the only implicit conversion that is in scope by default in every ScalaTest Suite. Other implicit conversions offered by ScalaTest, such as those that support the matchers DSL or invokePrivate, must be explicitly invited into your test code, either by mixing in a trait or importing the members of its companion object. The reason ScalaTest requires you to invite in implicit conversions (with the exception of the implicit conversion for === operator) is because if one of ScalaTest's implicit conversions clashes with an implicit conversion used in the code you are trying to test, your program won't compile. Thus there is a chance that if you are ever trying to use a library or test some code that also offers an implicit conversion involving a === operator, you could run into the problem of a compiler error due to an ambiguous implicit conversion. If that happens, you can turn off the implicit conversion offered by this convertToEqualizer method simply by overriding the method in your Suite subclass, but not marking it as implicit:

    // In your Suite subclass
    override def convertToEqualizer(left: Any) = new Equalizer(left)
    

    left

    the object whose type to convert to Equalizer.

    Attributes
    implicit
    Definition Classes
    Assertions
  14. def describe (description: String)(fun: ⇒ Unit): Unit

    Describe a “subject” being specified and tested by the passed function value.

    Describe a “subject” being specified and tested by the passed function value. The passed function value may contain more describers (defined with describe) and/or tests (defined with it). This trait's implementation of this method will register the description string and immediately invoke the passed function.

    Attributes
    protected
  15. def eq (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  16. def equals (arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  17. def execute (testName: String = null, configMap: Map[String, Any] = Map(), color: Boolean = true, durations: Boolean = false, shortstacks: Boolean = false, fullstacks: Boolean = false, stats: Boolean = false): Unit

    Executes one or more tests in this Suite, printing results to the standard output.

    Executes one or more tests in this Suite, printing results to the standard output.

    This method invokes run on itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:

    The testName parameter

    If you leave testName at its default value (of null), this method will pass None to the testName parameter of run, and as a result all the tests in this suite will be executed. If you specify a testName, this method will pass Some(testName) to run, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:

    scala> (new ExampleSuite).execute()
    

    To run just the test named "my favorite test" in a suite from the Scala interpreter, you would write:

    scala> (new ExampleSuite).execute("my favorite test")
    

    Or:

    scala> (new ExampleSuite).execute(testName = "my favorite test")
    

    The configMap parameter

    If you provide a value for the configMap parameter, this method will pass it to run. If not, the default value of an empty Map will be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:

    scala> (new ExampleSuite).execute(configMap = Map("inputFileName" -> "in.txt")
    

    The color parameter

    If you leave the color parameter unspecified, this method will configure the reporter it passes to run to print to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color, like this:

    scala> (new ExampleSuite).execute(color = false)
    

    The durations parameter

    If you leave the durations parameter unspecified, this method will configure the reporter it passes to run to not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations, like this:

    scala> (new ExampleSuite).execute(durations = true)
    

    The shortstacks and fullstacks parameters

    If you leave both the shortstacks and fullstacks parameters unspecified, this method will configure the reporter it passes to run to not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for shortstacks:

    scala> (new ExampleSuite).execute(shortstacks = true)
    

    For full stack traces, set fullstacks to true:

    scala> (new ExampleSuite).execute(fullstacks = true)
    

    If you specify true for both shortstacks and fullstacks, you'll get full stack traces.

    The stats parameter

    If you leave the stats parameter unspecified, this method will not fire RunStarting and either RunCompleted or RunAborted events to the reporter it passes to run. If you specify true for stats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:

    scala> (new ExampleSuite).execute(stats = true)
    

    To summarize, this method will pass to run:

    • testName - None if this method's testName parameter is left at its default value of null, else Some(testName).
    • reporter - a reporter that prints to the standard output
    • stopper - a Stopper whose apply method always returns false
    • filter - a Filter constructed with None for tagsToInclude and Set() for tagsToExclude
    • configMap - the configMap passed to this method
    • distributor - None
    • tracker - a new Tracker

    Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named run is that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run, this method would have the same name but different arguments than the main run method that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)

    Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName is null. Normally in Scala the type of testName would be Option[String] and the default value would be None, as it is in this trait's run method. The null value is used here for two reasons. First, in ScalaTest 1.5, execute was changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code, testName needed to have type String, as it did in two of the overloaded execute methods prior to 1.5. The other reason is that execute has always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. A String type with a null default value lets users type suite.execute("my test name") rather than suite.execute(Some("my test name")), saving several keystrokes.

    The second non-idiomatic feature is that shortstacks and fullstacks are all lower case rather than camel case. This is done to be consistent with the Shell, which also uses those forms. The reason lower case is used in the Shell is to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTest Shell, methods like shortstacks, fullstacks, and nostats, etc., are designed to be all lower case so they feel more like shell commands than methods.

    testName

    the name of one test to run.

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    color

    a boolean that configures whether output is printed in color

    durations

    a boolean that configures whether test and suite durations are printed to the standard output

    shortstacks

    a boolean that configures whether short stack traces should be printed for test failures

    fullstacks

    a boolean that configures whether full stack traces should be printed for test failures

    stats

    a boolean that configures whether test and suite statistics are printed to the standard output

    Attributes
    final
    Definition Classes
    Suite
  18. def expect (expected: Any)(actual: Any): Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), expect returns normally. Else, expect throws an TestFailedException whose detail message includes the expected and actual values.

    expected

    the expected value

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
  19. def expect (expected: Any, clue: Any)(actual: Any): Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), expect returns normally. Else, if actual is not equal to expected, expect throws an TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed message.

    expected

    the expected value

    clue

    An object whose toString method returns a message to include in a failure report.

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
  20. def expectedTestCount (filter: Filter): Int

    The total number of tests that are expected to run when this Suite's run method is invoked.

    The total number of tests that are expected to run when this Suite's run method is invoked.

    This trait's implementation of this method returns the sum of:

    • the size of the testNames List, minus the number of tests marked as ignored
    • the sum of the values obtained by invoking expectedTestCount on every nested Suite contained in nestedSuites
    filter

    a Filter with which to filter tests to count based on their tags

    Definition Classes
    SuiteAbstractSuite
  21. def fail (cause: Throwable): Nothing

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString().

    cause

    a Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
  22. def fail (message: String, cause: Throwable): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
  23. def fail (message: String): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    message

    A message describing the failure.

    Definition Classes
    Assertions
  24. def fail (): Nothing

    Throws TestFailedException to indicate a test failed.

    Throws TestFailedException to indicate a test failed.

    Definition Classes
    Assertions
  25. def finalize (): Unit

    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  26. def getClass (): java.lang.Class[_]

    Attributes
    final
    Definition Classes
    AnyRef
  27. def hashCode (): Int

    Definition Classes
    AnyRef → Any
  28. def ignore (testText: String, testTags: Tag*)(testFun: ⇒ Unit): Unit

    Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments.

    Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments. This method will register the test for later ignoring via an invocation of one of the execute methods. This method exists to make it easy to ignore an existing test by changing the call to it to ignore without deleting or commenting out the actual test code. The test will not be executed, but a report will be sent that indicates the test was ignored. The name of the test will be a concatenation of the text of all surrounding describers, from outside in, and the passed spec text, with one space placed between each item. (See the documenation for testNames for an example.) The resulting test name must not have been registered previously on this FunSpec instance.

    testTags

    the optional list of tags for this test

    testFun

    the test function

    Attributes
    protected
  29. implicit def info : Informer

    Returns an Informer that during test execution will forward strings (and other objects) passed to its apply method to the current reporter.

    Returns an Informer that during test execution will forward strings (and other objects) passed to its apply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while this FunSpec is being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will throw an exception. This method can be called safely by any thread.

    Attributes
    protected implicit
  30. def intercept [T <: AnyRef] (f: ⇒ Any)(implicit manifest: Manifest[T]): T

    Intercept and return an exception that's expected to be thrown by the passed function value.

    Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    f

    the function value that should throw the expected exception

    manifest

    an implicit Manifest representing the type of the specified type parameter.

    returns

    the intercepted exception, if it is of the expected type

    Definition Classes
    Assertions
  31. def isInstanceOf [T0] : Boolean

    Attributes
    final
    Definition Classes
    Any
  32. val it : ItWord

    Supports test (and shared test) registration in FunSpecs.

    Supports test (and shared test) registration in FunSpecs.

    This field supports syntax such as the following:

    it("should be empty")
    ^
    

     class="stExamples"
    it should behave like nonFullStack(stackWithOneItem)
    ^
    

    For more information and examples of the use of the it field, see the main documentation for this trait.

    Attributes
    protected
  33. def ne (arg0: AnyRef): Boolean

    Attributes
    final
    Definition Classes
    AnyRef
  34. def nestedSuites : List[Suite]

    A List of this Suite object's nested Suites.

    A List of this Suite object's nested Suites. If this Suite contains no nested Suites, this method returns an empty List. This trait's implementation of this method returns an empty List.

    Definition Classes
    SuiteAbstractSuite
  35. def notify (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
  36. def notifyAll (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
  37. def pending : PendingNothing

    Throws TestPendingException to indicate a test is pending.

    Throws TestPendingException to indicate a test is pending.

    A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

    To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

    Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or FunSpec to be denoted by placing "(pending)" after the test name, as in:

    test("that style rules are not laws") (pending)
    

    Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

    Definition Classes
    Suite
  38. def pendingUntilFixed (f: ⇒ Unit): Unit

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, a pendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

    This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedException with a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

    f

    a block of code, which if it completes abruptly, should trigger a TestPendingException

    Definition Classes
    Suite
  39. def run (testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Unit

    Runs this suite of tests.

    Runs this suite of tests.

    If testName is None, this trait's implementation of this method calls these two methods on this object in this order:

    • runNestedSuites(report, stopper, tagsToInclude, tagsToExclude, configMap, distributor)
    • runTests(testName, report, stopper, tagsToInclude, tagsToExclude, configMap)

    If testName is defined, then this trait's implementation of this method calls runTests, but does not call runNestedSuites. This behavior is part of the contract of this method. Subclasses that override run must take care not to call runNestedSuites if testName is defined. (The OneInstancePerTest trait depends on this behavior, for example.)

    Subclasses and subtraits that override this run method can implement them without invoking either the runTests or runNestedSuites methods, which are invoked by this trait's implementation of this method. It is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runNestedSuites also override runNestedSuites and make it final. Similarly it is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runTests also override runTests (and runTest, which this trait's implementation of runTests calls) and make it final. The implementation of these final methods can either invoke the superclass implementation of the method, or throw an UnsupportedOperationException if appropriate. The reason for this recommendation is that ScalaTest includes several traits that override these methods to allow behavior to be mixed into a Suite. For example, trait BeforeAndAfterEach overrides runTestss. In a Suite subclass that no longer invokes runTests from run, the BeforeAndAfterEach trait is not applicable. Mixing it in would have no effect. By making runTests final in such a Suite subtrait, you make the attempt to mix BeforeAndAfterEach into a subclass of your subtrait a compiler error. (It would fail to compile with a complaint that BeforeAndAfterEach is trying to override runTests, which is a final method in your trait.)

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Definition Classes
    FunSpecSuiteAbstractSuite
  40. def runNestedSuites (reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Unit

    Run zero to many of this Suite's nested Suites.

    Run zero to many of this Suite's nested Suites.

    If the passed distributor is None, this trait's implementation of this method invokes run on each nested Suite in the List obtained by invoking nestedSuites. If a nested Suite's run method completes abruptly with an exception, this trait's implementation of this method reports that the Suite aborted and attempts to run the next nested Suite. If the passed distributor is defined, this trait's implementation puts each nested Suite into the Distributor contained in the Some, in the order in which the Suites appear in the List returned by nestedSuites, passing in a new Tracker obtained by invoking nextTracker on the Tracker passed to this method.

    Implementations of this method are responsible for ensuring SuiteStarting events are fired to the Reporter before executing any nested Suite, and either SuiteCompleted or SuiteAborted after executing any nested Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    protected
    Definition Classes
    SuiteAbstractSuite
  41. def runTest (testName: String, reporter: Reporter, stopper: Stopper, configMap: Map[String, Any], tracker: Tracker): Unit

    Run a test.

    Run a test. This trait's implementation runs the test registered with the name specified by testName. Each test's name is a concatenation of the text of all describers surrounding a test, from outside in, and the test's spec text, with one space placed between each item. (See the documenation for testNames for an example.)

    testName

    the name of one test to execute.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    configMap

    a Map of properties that can be used by this FunSpec's executing tests.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    protected
    Definition Classes
    FunSpecSuiteAbstractSuite
  42. def runTests (testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Unit

    Run zero to many of this FunSpec's tests.

    Run zero to many of this FunSpec's tests.

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Attributes
    protected
    Definition Classes
    FunSpecSuiteAbstractSuite
  43. def suiteName : String

    A user-friendly suite name for this Suite.

    A user-friendly suite name for this Suite.

    This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of runNestedSuites calls this method to obtain a name for Reports to pass to the suiteStarting, suiteCompleted, and suiteAborted methods of the Reporter.

    returns

    this Suite object's suite name.

    Definition Classes
    Suite
  44. def synchronized [T0] (arg0: ⇒ T0): T0

    Attributes
    final
    Definition Classes
    AnyRef
  45. def tags : Map[String, Set[String]]

    A Map whose keys are String tag names to which tests in this FunSpec belong, and values the Set of test names that belong to each tag.

    A Map whose keys are String tag names to which tests in this FunSpec belong, and values the Set of test names that belong to each tag. If this FunSpec contains no tags, this method returns an empty Map.

    This trait's implementation returns tags that were passed as strings contained in Tag objects passed to methods test and ignore.

    Definition Classes
    FunSpecSuiteAbstractSuite
  46. def testNames : Set[String]

    An immutable Set of test names.

    An immutable Set of test names. If this FunSpec contains no tests, this method returns an empty Set.

    This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered. Each test's name is composed of the concatenation of the text of each surrounding describer, in order from outside in, and the text of the example itself, with all components separated by a space. For example, consider this FunSpec:

    import org.scalatest.FunSpec
    
    class StackSpec extends FunSpec { describe("A Stack") { describe("(when not empty)") { it("must allow me to pop") {} } describe("(when not full)") { it("must allow me to push") {} } } }

    Invoking testNames on this FunSpec will yield a set that contains the following two test name strings:

    "A Stack (when not empty) must allow me to pop"
    "A Stack (when not full) must allow me to push"
    

    Definition Classes
    FunSpecSuiteAbstractSuite
  47. def toString (): String

    Definition Classes
    AnyRef → Any
  48. def wait (): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  49. def wait (arg0: Long, arg1: Int): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  50. def wait (arg0: Long): Unit

    Attributes
    final
    Definition Classes
    AnyRef
    Annotations
    @throws()
  51. def withClue (clue: Any)(fun: ⇒ Unit): Unit

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

    This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

    withClue("(Employee's name was: " + employee.name + ")") {
      intercept[IllegalArgumentException] {
        employee.getTask(-1)
      }
    }
    

    If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

    (Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
    

    Definition Classes
    Assertions
  52. def withFixture (test: NoArgTest): Unit

    Run the passed test function in the context of a fixture established by this method.

    Run the passed test function in the context of a fixture established by this method.

    This method should set up the fixture needed by the tests of the current suite, invoke the test function, and if needed, perform any clean up needed after the test completes. Because the NoArgTest function passed to this method takes no parameters, preparing the fixture will require side effects, such as reassigning instance vars in this Suite or initializing a globally accessible external database. If you want to avoid reassigning instance vars you can use fixture.Suite.

    This trait's implementation of runTest invokes this method for each test, passing in a NoArgTest whose apply method will execute the code of the test.

    This trait's implementation of this method simply invokes the passed NoArgTest function.

    test

    the no-arg test function to run with a fixture

    Attributes
    protected
    Definition Classes
    SuiteAbstractSuite

Inherited from Suite

Inherited from Serializable

Inherited from AbstractSuite

Inherited from Assertions

Inherited from AnyRef

Inherited from Any