This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
Helper class used by code generated by the assert
macro.
Class used via an implicit conversion to enable two objects to be compared with
===
and !==
with a Boolean
result and an enforced type constraint between
two object types.
This class is part of the ScalaUtils “explicitly DSL”.”“
This class is part of the ScalaUtils “explicitly DSL”.”“
This class is part of the ScalaUtils “explicitly DSL”.”“
This class is part of the ScalaUtils “explicitly DSL”.”“
Class used via an implicit conversion to enable any two objects to be compared with
===
and !==
with a Boolean
result and no enforced type constraint between
two object types.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
Class used via an implicit conversion to enable any two objects to be compared with
===
and !==
with an Option[String]
result and an enforced type constraint between
two object types.
Class used via an implicit conversion to enable any two objects to be compared with
===
and !==
with an Option[String]
result and no enforced type constraint between
two object types.
Wrapper class with a +-
method that, given a Numeric
argument, returns a Spread
.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
This class supports the syntax of FlatSpec
, WordSpec
, fixture.FlatSpec
,
and fixture.WordSpec
.
This class is part of the ScalaUtils “explicitly DSL”.”“
This class is part of the ScalaTest matchers DSL.
This class is part of the ScalaTest matchers DSL.
Returns a TripleEqualsInvocationOnSpread[T]
, given an Spread[T]
, to facilitate
the “<left> should !== (<pivot> +- <tolerance>)
”
syntax of Matchers
.”“
Returns a TripleEqualsInvocationOnSpread[T]
, given an Spread[T]
, to facilitate
the “<left> should !== (<pivot> +- <tolerance>)
”
syntax of Matchers
.
the Spread[T]
against which to compare the left-hand value
a TripleEqualsInvocationOnSpread
wrapping the passed Spread[T]
value, with
expectingEqual
set to false
.
Returns a TripleEqualsInvocation[Null]
, given a null
reference, to facilitate
the “<left> should !== null
” syntax
of Matchers
.”“
Returns a TripleEqualsInvocation[Null]
, given a null
reference, to facilitate
the “<left> should !== null
” syntax
of Matchers
.
a null reference
a TripleEqualsInvocation
wrapping the passed null
value, with expectingEqual
set to false
.
Returns a TripleEqualsInvocation[T]
, given an object of type T
, to facilitate
the “<left> should !== <right>
” syntax
of Matchers
.”“
Returns a TripleEqualsInvocation[T]
, given an object of type T
, to facilitate
the “<left> should !== <right>
” syntax
of Matchers
.
the right-hand side value for an equality assertion
a TripleEqualsInvocation
wrapping the passed right value, with expectingEqual
set to false
.
This method enables the following syntax:
This method enables the following syntax:
num must (not be < (10) and not be > (17)) ^
This method enables the following syntax:
This method enables the following syntax:
num must (not be <= (10) and not be > (17)) ^
Returns a TripleEqualsInvocationOnSpread[T]
, given an Spread[T]
, to facilitate
the “<left> should === (<pivot> +- <tolerance>)
”
syntax of Matchers
.”“
Returns a TripleEqualsInvocationOnSpread[T]
, given an Spread[T]
, to facilitate
the “<left> should === (<pivot> +- <tolerance>)
”
syntax of Matchers
.
the Spread[T]
against which to compare the left-hand value
a TripleEqualsInvocationOnSpread
wrapping the passed Spread[T]
value, with
expectingEqual
set to true
.
Returns a TripleEqualsInvocation[Null]
, given a null
reference, to facilitate
the “<left> should === null
” syntax
of Matchers
.”“
Returns a TripleEqualsInvocation[Null]
, given a null
reference, to facilitate
the “<left> should === null
” syntax
of Matchers
.
a null reference
a TripleEqualsInvocation
wrapping the passed null
value, with expectingEqual
set to true
.
Returns a TripleEqualsInvocation[T]
, given an object of type T
, to facilitate
the “<left> should === <right>
” syntax
of Matchers
.”“
Returns a TripleEqualsInvocation[T]
, given an object of type T
, to facilitate
the “<left> should === <right>
” syntax
of Matchers
.
the right-hand side value for an equality assertion
a TripleEqualsInvocation
wrapping the passed right value, with expectingEqual
set to true
.
This method enables the following syntax:
This method enables the following syntax:
num must (not be > (10) and not be < (7)) ^
This method enables the following syntax:
This method enables the following syntax:
num must (not be >= (10) and not be < (7)) ^
This method enables the following syntax:
This method enables the following syntax:
a [RuntimeException] must be thrownBy { ... }
^
This field enables the following syntax:
This field enables the following syntax:
badBook must not be a ('goodRead)
^
This field enables syntax such as the following:
This field enables syntax such as the following:
result should equal ("hello") (after being lowerCased)
^
This method enables the following syntax for String
:
This method enables the following syntax for String
:
all(str) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax for java.util.Map
:
This method enables the following syntax for java.util.Map
:
all(jmap) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax:
This method enables the following syntax:
all(xs) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (allOf(1, 2)) ^
This method enables the following syntax:
This method enables the following syntax:
an [Exception] must be thrownBy { ... }
^
This field enables the following syntax:
This field enables the following syntax:
badBook must not be an (excellentRead) ^
Assert that a boolean condition, described in String
message
, is true.
Assert that a boolean condition, described in String
message
, is true.
If the condition is true
, this method returns normally.
Else, it throws TestFailedException
with the
String
obtained by invoking toString
on the
specified clue
as the exception's detail message.
the boolean condition to assert
An objects whose toString
method returns a message to include in a failure report.
if message
is null
.
if the condition is false
.
Assert that a boolean condition is true.
Assert that a boolean condition is true.
If the condition is true
, this method returns normally.
Else, it throws TestFailedException
.
This method is implemented in terms of a Scala macro that will generate a more helpful error message for simple quality checks of this form:
Any other form of expression will just get a plain-old TestFailedException
at this time. In the future,
we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior
was sufficient to allow the ===
that returns Boolean
, not Option[String]
to be
the default in tests. This makes ===
consistent between tests and production code. If you have pre-existing
code you wrote under ScalaTest 1.x, in which you are expecting===
to return an Option[String]
,
use can get that behavior back by mixing in trait LegacyTripleEquals
.
the boolean condition to assert
if the condition is false
.
Assert that the value passed as expected
equals the value passed as actual
.
Assert that the value passed as expected
equals the value passed as actual
.
If the actual
value equals the expected
value
(as determined by ==
), assertResult
returns
normally. Else, assertResult
throws a
TestFailedException
whose detail message includes the expected and actual values.
the expected value
the actual value, which should equal the passed expected
value
if the passed actual
value does not equal the passed expected
value.
Assert that the value passed as expected
equals the value passed as actual
.
Assert that the value passed as expected
equals the value passed as actual
.
If the actual
equals the expected
(as determined by ==
), assertResult
returns
normally. Else, if actual
is not equal to expected
, assertResult
throws a
TestFailedException
whose detail message includes the expected and actual values, as well as the String
obtained by invoking toString
on the passed clue
.
the expected value
An object whose toString
method returns a message to include in a failure report.
the actual value, which should equal the passed expected
value
if the passed actual
value does not equal the passed expected
value.
Asserts that a given string snippet of code does not pass the Scala type checker.
Asserts that a given string snippet of code does not pass the Scala type checker.
Often when creating libraries you may wish to ensure that certain arrangements of code that
represent potential “user errors” do not compile, so that your library is more error resistant.
ScalaTest's Assertions
trait includes the following syntax for that purpose:
assertTypeError("val a: String = 1")
Although assertTypeError
is implemented with a macro that determines at compile time whether
the snippet of code represented by the passed string type checks, errors (i.e.,
snippets of code that do type check) are reported as test failures at runtime.
the snippet of code that should not type check
Helper instance used by code generated by macro assertion.
Helper instance used by code generated by macro assertion.
Assume that a boolean condition, described in String
message
, is true.
Assume that a boolean condition, described in String
message
, is true.
If the condition is true
, this method returns normally.
Else, it throws TestCanceledException
with the
String
obtained by invoking toString
on the
specified clue
as the exception's detail message.
the boolean condition to assume
An objects whose toString
method returns a message to include in a failure report.
if message
is null
.
if the condition is false
.
Assume that a boolean condition is true.
Assume that a boolean condition is true.
If the condition is true
, this method returns normally.
Else, it throws TestCanceledException
.
This method is implemented in terms of a Scala macro that will generate a more helpful error message for simple quality checks of this form:
Any other form of expression will just get a plain-old TestCanceledException
at this time. In the future,
we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior
was sufficient to allow the ===
that returns Boolean
, not Option[String]
to be
the default in tests. This makes ===
consistent between tests and production code. If you have pre-existing
code you wrote under ScalaTest 1.x, in which you are expecting===
to return an Option[String]
,
use can get that behavior back by mixing in trait LegacyTripleEquals
.
the boolean condition to assume
if the condition is false
.
This method enables the following syntax for String
:
This method enables the following syntax for String
:
atLeast(1, str) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax for java.util.Map
:
This method enables the following syntax for java.util.Map
:
atLeast(1, jmap) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax:
This method enables the following syntax:
atLeast(1, xs) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (atLeastOneOf(1, 2)) ^
This method enables the following syntax for String
:
This method enables the following syntax for String
:
atMost(3, str) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax for java.util.Map
:
This method enables the following syntax for java.util.Map
:
atMost(3, jmap) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax:
This method enables the following syntax:
atMost(3, xs) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (atMostOneOf(1, 2)) ^
This field enables syntax such as the following:
This field enables syntax such as the following:
obj should (be theSameInstanceAs (string) and be theSameInstanceAs (string)) ^
This method enables the following syntax for String
:
This method enables the following syntax for String
:
between(1, 3, str) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax for java.util.Map
:
This method enables the following syntax for java.util.Map
:
between(1, 3, jmap) must fullymatch regex ("Hel*o world".r) ^
This method enables the following syntax:
This method enables the following syntax:
between(1, 3, xs) must fullymatch regex ("Hel*o world".r) ^
Throws TestCanceledException
, with the passed
Throwable
cause, to indicate a test failed.
Throws TestCanceledException
, with the passed
Throwable
cause, to indicate a test failed.
The getMessage
method of the thrown TestCanceledException
will return cause.toString
.
a Throwable
that indicates the cause of the cancellation.
if cause
is null
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
A message describing the failure.
A Throwable
that indicates the cause of the failure.
if message
or cause
is null
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message, to indicate a test was canceled.
Throws TestCanceledException
, with the passed
String
message
as the exception's detail
message, to indicate a test was canceled.
A message describing the cancellation.
if message
is null
Throws TestCanceledException
to indicate a test was canceled.
Throws TestCanceledException
to indicate a test was canceled.
This field enables the following syntax:
This field enables the following syntax:
"val a: String = 1" shouldNot compile
^
This field enables syntax such as the following:
This field enables syntax such as the following:
list should (contain ('a') and have length (7)) ^
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that B
is
implicitly convertible to A
, given an implicit Equivalence[A]
.
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that B
is
implicitly convertible to A
, given an implicit Equivalence[A]
.
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[A]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
ConversionCheckedTripleEquals
) and
ConversionCheckedLegacyTripleEquals
, and
overriden as non-implicit by the other subtraits in this package.
an Equivalence[A]
type class to which the Constraint.areEqual
method will delegate to determine equality.
an implicit conversion from B
to A
a Constraint[A, B]
whose areEqual
method delegates to the areEquivalent
method of
the passed Equivalence[A]
.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that A
must be a subtype of B
, given an explicit Equivalence[B]
.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that A
must be a subtype of B
, given an explicit Equivalence[B]
.
This method is used to enable the Explicitly
DSL for
TypeCheckedTripleEquals
by requiring an explicit Equivalance[B]
, but
taking an implicit function that provides evidence that A
is a subtype of B.
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[B]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
LowPriorityTypeCheckedConstraint
(extended by
TypeCheckedTripleEquals
), and
LowPriorityTypeCheckedLegacyConstraint
(extended by
TypeCheckedLegacyTripleEquals
), and
overriden as non-implicit by the other subtraits in this package.
an Equivalence[B]
type class to which the Constraint.areEqual
method
will delegate to determine equality.
evidence that A
is a subype of B
a Constraint[A, B]
whose areEqual
method delegates to the
areEquivalent
method of the passed Equivalence[B]
.
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that A
is
implicitly convertible to B
, given an explicit Equivalence[B]
.
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that A
is
implicitly convertible to B
, given an explicit Equivalence[B]
.
This method is used to enable the Explicitly
DSL for
ConversionCheckedTripleEquals
by requiring an explicit Equivalance[B]
, but
taking an implicit function that converts from A
to B.
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[B]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
LowPriorityConversionCheckedConstraint
(extended by
ConversionCheckedTripleEquals
), and
LowPriorityConversionCheckedLegacyConstraint
(extended by
ConversionCheckedLegacyTripleEquals
), and
overriden as non-implicit by the other subtraits in this package.
a Constraint[A, B]
whose areEqual
method delegates to the areEquivalent
method of
the passed Equivalence[B]
.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that B
must be a subtype of A
, given an explicit Equivalence[A]
.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that B
must be a subtype of A
, given an explicit Equivalence[A]
.
This method is used to enable the Explicitly
DSL for
TypeCheckedTripleEquals
by requiring an explicit Equivalance[B]
, but
taking an implicit function that provides evidence that A
is a subtype of B. For example, under TypeCheckedTripleEquals
,
this method (as an implicit method), would be used to compile this statement:
def closeEnoughTo1(num: Double): Boolean = (num === 1.0)(decided by forgivingEquality)
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[A]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
TypeCheckedTripleEquals
) and
TypeCheckedLegacyTripleEquals
, and
overriden as non-implicit by the other subtraits in this package.
evidence that B
is a subype of A
a Constraint[A, B]
whose areEqual
method delegates to the areEquivalent
method of
the passed Equivalence[A]
.
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that B
is
implicitly convertible to A
, given an explicit Equivalence[A]
.
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that B
is
implicitly convertible to A
, given an explicit Equivalence[A]
.
This method is used to enable the Explicitly
DSL for
ConversionCheckedTripleEquals
by requiring an explicit Equivalance[A]
, but
taking an implicit function that converts from B
to A. For example, under ConversionCheckedTripleEquals
,
this method (as an implicit method), would be used to compile this statement:
def closeEnoughTo1(num: Double): Boolean = (num === 1.0)(decided by forgivingEquality)
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[A]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
ConversionCheckedTripleEquals
) and
ConversionCheckedLegacyTripleEquals
, and
overriden as non-implicit by the other subtraits in this package.
an Equivalence[A]
type class to which the Constraint.areEqual
method will delegate to determine equality.
a Constraint[A, B]
whose areEqual
method delegates to the areEquivalent
method of
the passed Equivalence[A]
.
Implicitly converts an object of a Numeric
type to a PlusOrMinusWrapper
,
to enable a +-
method to be invoked on that object.
Implicitly converts an object of a Numeric
type to a PlusOrMinusWrapper
,
to enable a +-
method to be invoked on that object.
This implicit conversion method converts a Symbol
to a
HavePropertyMatcherGenerator
, to enable the symbol to be used with the have ('author ("Dickens"))
syntax.
This implicit conversion method converts a Symbol
to a
HavePropertyMatcherGenerator
, to enable the symbol to be used with the have ('author ("Dickens"))
syntax.
Implicitly converts an object of type T
to a AnyMustWrapper[T]
,
to enable must
methods to be invokable on that object.
Implicitly converts an object of type T
to a AnyMustWrapper[T]
,
to enable must
methods to be invokable on that object.
Converts to an CheckingEqualizer
that provides ===
and !==
operators
that result in Boolean
and enforce a type constraint.
Converts to an CheckingEqualizer
that provides ===
and !==
operators
that result in Boolean
and enforce a type constraint.
This method is overridden and made implicit by subtraits TypeCheckedTripleEquals
and
ConversionCheckedTripleEquals
, and overriden as
non-implicit by the other subtraits in this package.
the object whose type to convert to CheckingEqualizer
.
if left
is null
.
Converts to an Equalizer
that provides ===
and !==
operators that
result in Boolean
and enforce no type constraint.
Converts to an Equalizer
that provides ===
and !==
operators that
result in Boolean
and enforce no type constraint.
This method is overridden and made implicit by subtrait TripleEquals
and overriden as non-implicit by the other
subtraits in this package.
the object whose type to convert to Equalizer
.
if left
is null
.
Converts to a LegacyCheckingEqualizer
that provides ===
and !==
operators
that result in Option[String]
and enforce a type constraint.
Converts to a LegacyCheckingEqualizer
that provides ===
and !==
operators
that result in Option[String]
and enforce a type constraint.
This method is overridden and made implicit by subtraits TypeCheckedLegacyTripleEquals
and ConversionCheckedLegacyTripleEquals
, and
overriden as non-implicit by the other subtraits in this package.
the object whose type to convert to LegacyCheckingEqualizer
.
if left
is null
.
Converts to a LegacyEqualizer
that provides ===
and !==
operators that
result in Option[String]
and enforce no type constraint.
Converts to a LegacyEqualizer
that provides ===
and !==
operators that
result in Option[String]
and enforce no type constraint.
This method is overridden and made implicit by subtrait LegacyTripleEquals
and overriden as non-implicit
by the other subtraits in this package.
the object whose type to convert to LegacyEqualizer
.
if left
is null
.
Implicitly converts an object of type scala.util.matching.Regex
to a RegexWrapper
,
to enable withGroup
and withGroups
methods to be invokable on that object.
Implicitly converts an object of type scala.util.matching.Regex
to a RegexWrapper
,
to enable withGroup
and withGroups
methods to be invokable on that object.
Implicitly converts an object of type java.lang.String
to a StringMustWrapper
,
to enable must
methods to be invokable on that object.
Implicitly converts an object of type java.lang.String
to a StringMustWrapper
,
to enable must
methods to be invokable on that object.
This field enables syntax such as the following:
This field enables syntax such as the following:
result should equal ("hello") (decided by defaultEquality)
^
Returns an Equality[A]
for any type A
that determines equality
by first calling .deep
on any Array
(on either the left or right side),
then comparing the resulting objects with ==
.
Returns an Equality[A]
for any type A
that determines equality
by first calling .deep
on any Array
(on either the left or right side),
then comparing the resulting objects with ==
.
a default Equality
for type A
This field enables the following syntax:
This field enables the following syntax:
seq should be (defined) ^
This method enables the following syntax:
This method enables the following syntax:
list must (not be definedAt (7) and not be definedAt (9)) ^
This field enables syntax such as the following, given an
Equivalence[String]
named myStringEquivalence
:
This field enables syntax such as the following, given an
Equivalence[String]
named myStringEquivalence
:
result should equal ("hello") (determined by myStringEquivalence)
^
This field enables the following syntax:
This field enables the following syntax:
list should be (empty) ^
This field enables syntax such as the following:
This field enables syntax such as the following:
string should (endWith ("ago") and include ("score")) ^
This method enables syntax such as the following:
This method enables syntax such as the following:
result must equal (null)
^
This method enables syntax such as the following:
This method enables syntax such as the following:
result must equal (100 +- 1) ^
This method enables the following syntax:
This method enables the following syntax:
result should equal (7)
^
The left should equal (right)
syntax works by calling ==
on the left
value, passing in the right
value, on every type except arrays. If both left
and right are arrays, deep
will be invoked on both left
and right
before comparing them with ==. Thus, even though this expression
will yield false, because Array
's equals
method compares object identity:
Array(1, 2) == Array(1, 2) // yields false
The following expression will not result in a TestFailedException
, because ScalaTest will compare
the two arrays structurally, taking into consideration the equality of the array's contents:
Array(1, 2) should equal (Array(1, 2)) // succeeds (i.e., does not throw TestFailedException)
If you ever do want to verify that two arrays are actually the same object (have the same identity), you can use the
be theSameInstanceAs
syntax.
This method enables the following syntax for String
:
This method enables the following syntax for String
:
every(str) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax for java.util.Map
:
This method enables the following syntax for java.util.Map
:
every(jmap) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax:
This method enables the following syntax:
every(xs) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax for String
:
This method enables the following syntax for String
:
exactly(str) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax for java.util.Map
:
This method enables the following syntax for java.util.Map
:
exactly(jmap) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax:
This method enables the following syntax:
exactly(xs) must fullymatch regex ("Hel*o world".r)
^
This field enables the following syntax:
This field enables the following syntax:
file should exist ^
Throws TestFailedException
, with the passed
Throwable
cause, to indicate a test failed.
Throws TestFailedException
, with the passed
Throwable
cause, to indicate a test failed.
The getMessage
method of the thrown TestFailedException
will return cause.toString
.
a Throwable
that indicates the cause of the failure.
if cause
is null
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message and Throwable
cause, to indicate a test failed.
A message describing the failure.
A Throwable
that indicates the cause of the failure.
if message
or cause
is null
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message, to indicate a test failed.
Throws TestFailedException
, with the passed
String
message
as the exception's detail
message, to indicate a test failed.
A message describing the failure.
if message
is null
Throws TestFailedException
to indicate a test failed.
Throws TestFailedException
to indicate a test failed.
This field enables syntax such as the following:
This field enables syntax such as the following:
string should (fullyMatch regex ("Hel*o, wor.d") and not have length (99)) ^
This field enables syntax such as the following:
This field enables syntax such as the following:
list should (have length (3) and not contain ('a')) ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (inOrder(1, 2)) ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (inOrderOnly(1, 2)) ^
This field enables syntax such as the following:
This field enables syntax such as the following:
string should (include ("hope") and not startWith ("no")) ^
Intercept and return an exception that's expected to be thrown by the passed function value.
Intercept and return an exception that's expected to
be thrown by the passed function value. The thrown exception must be an instance of the
type specified by the type parameter of this method. This method invokes the passed
function. If the function throws an exception that's an instance of the specified type,
this method returns that exception. Else, whether the passed function returns normally
or completes abruptly with a different exception, this method throws TestFailedException
.
Note that the type specified as this method's type parameter may represent any subtype of
AnyRef
, not just Throwable
or one of its subclasses. In
Scala, exceptions can be caught based on traits they implement, so it may at times make sense
to specify a trait that the intercepted exception's class must mix in. If a class instance is
passed for a type that could not possibly be used to catch an exception (such as String
,
for example), this method will complete abruptly with a TestFailedException
.
the function value that should throw the expected exception
an implicit Manifest
representing the type of the specified
type parameter.
the intercepted exception, if it is of the expected type
if the passed function does not complete abruptly with an exception
that's an instance of the specified type
passed expected
value.
This field enables the following syntax:
This field enables the following syntax:
map must not contain key (10)
^
This field enables the following syntax:
This field enables the following syntax:
"hi" should not have length (3) ^
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that A
is
implicitly convertible to B
, given an implicit Equivalence[B]
.
Provides a Constraint[A, B]
class for any two types A
and B
, enforcing the type constraint that A
is
implicitly convertible to B
, given an implicit Equivalence[B]
.
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[B]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
LowPriorityConversionCheckedConstraint
(extended by
ConversionCheckedTripleEquals
), and
LowPriorityConversionCheckedLegacyConstraint
(extended by
ConversionCheckedLegacyTripleEquals
), and
overriden as non-implicit by the other subtraits in this package.
an implicit conversion from A
to B
a Constraint[A, B]
whose areEqual
method delegates to the areEquivalent
method of
the passed Equivalence[B]
.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that A
must be a subtype of B
, given an implicit Equivalence[B]
.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that A
must be a subtype of B
, given an implicit Equivalence[B]
.
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[A]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
LowPriorityTypeCheckedConstraint
(extended by
TypeCheckedTripleEquals
), and
LowPriorityTypeCheckedLegacyConstraint
(extended by
TypeCheckedLegacyTripleEquals
), and
overriden as non-implicit by the other subtraits in this package.
an Equivalence[B]
type class to which the Constraint.areEqual
method
will delegate to determine equality.
evidence that A
is a subype of B
a Constraint[A, B]
whose areEqual
method delegates to the
areEquivalent
method of the passed Equivalence[B]
.
This method enables the following syntax:
This method enables the following syntax:
exception must not have message ("file not found")
^
This method enables the following syntax for String
:
This method enables the following syntax for String
:
no(str) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax for java.util.Map
:
This method enables the following syntax for java.util.Map
:
no(jmap) must fullymatch regex ("Hel*o world".r)
^
This method enables the following syntax:
This method enables the following syntax:
no(xs) must fullymatch regex ("Hel*o world".r)
^
This field enables the following syntax:
This field enables the following syntax:
noException should be thrownBy ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (noneOf(1, 2)) ^
This field enables syntax like the following:
This field enables syntax like the following:
myFile should (not be an (directory) and not have ('name ("foo.bar"))) ^
This method enables syntax such as the following:
This method enables syntax such as the following:
book must have (message ("A TALE OF TWO CITIES") (of [Book]), title ("A Tale of Two Cities")) ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (oneOf(1, 2)) ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (only(1, 2)) ^
This method enables the following syntax:
This method enables the following syntax:
evaluating { "hi".charAt(-1) } must produce [StringIndexOutOfBoundsException] ^
This field enables the following syntax:
This field enables the following syntax:
file should be (readable) ^
This field enables the following syntax:
This field enables the following syntax:
"eight" must not fullyMatch regex ("""(-)?(\d+)(\.\d*)?""".r) ^
This field enables the following syntax:
This field enables the following syntax:
set should not have size (3)
^
This field enables the following syntax:
This field enables the following syntax:
seq should be (sorted) ^
This field enables syntax such as the following:
This field enables syntax such as the following:
string should (startWith ("Four") and include ("year")) ^
This method enables the following syntax:
This method enables the following syntax:
the [FileNotFoundException] must be thrownBy { ... }
^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (theSameElementsAs(List(1, 2, 3))) ^
This method enables the following syntax:
This method enables the following syntax:
List(1, 2, 3) must contain (theSameElementsInOrderAs(List(1, 2))) ^
This field enables the following syntax:
This field enables the following syntax:
oneString must not be theSameInstanceAs (anotherString) ^
This method enables the following syntax:
This method enables the following syntax:
a [RuntimeException] must be thrownBy {...}
^
Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException
indicating no exception is thrown.
Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException
indicating no exception is thrown.
This method is intended to be used in the Scala interpreter to eliminate large stack traces when trying out ScalaTest assertions and
matcher expressions. It is not intended to be used in regular test code. If you want to ensure that a bit of code throws an expected
exception, use intercept
, not trap
. Here's an example interpreter session without trap
:
scala> import org.scalatest._ import org.scalatest._scala> import Matchers._ import Matchers._
scala> val x = 12 a: Int = 12
scala> x shouldEqual 13 org.scalatest.exceptions.TestFailedException: 12 did not equal 13 at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:449) at org.scalatest.Assertions$.newAssertionFailedException(Assertions.scala:1203) at org.scalatest.Assertions$AssertionsHelper.macroAssertTrue(Assertions.scala:417) at .<init>(<console>:15) at .<clinit>(<console>) at .<init>(<console>:7) at .<clinit>(<console>) at $print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:731) at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:980) at scala.tools.nsc.interpreter.IMain.loadAndRunReq$1(IMain.scala:570) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:601) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565) at scala.tools.nsc.interpreter.ILoop.reallyInterpret$1(ILoop.scala:745) at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:790) at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:702) at scala.tools.nsc.interpreter.ILoop.processLine$1(ILoop.scala:566) at scala.tools.nsc.interpreter.ILoop.innerLoop$1(ILoop.scala:573) at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:576) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:867) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:822) at scala.tools.nsc.MainGenericRunner.runTarget$1(MainGenericRunner.scala:83) at scala.tools.nsc.MainGenericRunner.process(MainGenericRunner.scala:96) at scala.tools.nsc.MainGenericRunner$.main(MainGenericRunner.scala:105) at scala.tools.nsc.MainGenericRunner.main(MainGenericRunner.scala)
That's a pretty tall stack trace. Here's what it looks like when you use trap
:
scala> trap { x shouldEqual 13 } res1: Throwable = org.scalatest.exceptions.TestFailedException: 12 did not equal 13
Much less clutter. Bear in mind, however, that if no exception is thrown by the
passed block of code, the trap
method will create a new NormalResult
(a subclass of Throwable
made for this purpose only) and return that. If the result was the Unit
value, it
will simply say that no exception was thrown:
scala> trap { x shouldEqual 12 } res2: Throwable = No exception was thrown.
If the passed block of code results in a value other than Unit
, the NormalResult
's toString
will print the value:
scala> trap { "Dude!" } res3: Throwable = No exception was thrown. Instead, result was: "Dude!"
Although you can access the result value from the NormalResult
, its type is Any
and therefore not
very convenient to use. It is not intended that trap
be used in test code. The sole intended use case for trap
is decluttering
Scala interpreter sessions by eliminating stack traces when executing assertion and matcher expressions.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that B
must be a subtype of A
, given an implicit Equivalence[A]
.
Provides a Constraint[A, B]
for any two types A
and B
, enforcing the type constraint
that B
must be a subtype of A
, given an implicit Equivalence[A]
.
The returned Constraint
's areEqual
method uses the implicitly passed Equivalence[A]
's
areEquivalent
method to determine equality.
This method is overridden and made implicit by subtraits
TypeCheckedTripleEquals
) and
TypeCheckedLegacyTripleEquals
, and
overriden as non-implicit by the other subtraits in this package.
evidence that B
is a subype of A
a Constraint[A, B]
whose areEqual
method delegates to the areEquivalent
method of
the passed Equivalence[A]
.
Provides a Constraint[A, B]
class for any two types A
and B
, with no type constraint enforced, given an
implicit Equality[A]
.
Provides a Constraint[A, B]
class for any two types A
and B
, with no type constraint enforced, given an
implicit Equality[A]
.
The returned Constraint
's areEqual
method uses the implicitly passed Equality[A]
's
areEqual
method to determine equality.
This method is overridden and made implicit by subtraits TripleEquals
and
LegacyTripleEquals
, and
overriden as non-implicit by the other subtraits in this package.
an Equality[A]
type class to which the Constraint.areEqual
method will delegate to determine equality.
a Constraint[A, B]
whose areEqual
method delegates to the areEqual
method of
the passed Equality[A]
.
This field enables the following syntax:
This field enables the following syntax:
map must not contain value (10)
^
Executes the block of code passed as the second parameter, and, if it
completes abruptly with a ModifiableMessage
exception,
prepends the "clue" string passed as the first parameter to the beginning of the detail message
of that thrown exception, then rethrows it.
Executes the block of code passed as the second parameter, and, if it
completes abruptly with a ModifiableMessage
exception,
prepends the "clue" string passed as the first parameter to the beginning of the detail message
of that thrown exception, then rethrows it. If clue does not end in a white space
character, one space will be added
between it and the existing detail message (unless the detail message is
not defined).
This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:
withClue("(Employee's name was: " + employee.name + ")") { intercept[IllegalArgumentException] { employee.getTask(-1) } }
If an invocation of intercept
completed abruptly with an exception, the resulting message would be something like:
(Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
if the passed clue
is null
This field enables the following syntax:
This field enables the following syntax:
file should be (writable) ^
Assert that an Option[String]
is None
.
Assert that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestFailedException
with the String
value of the Some
included in the TestFailedException
's
detail message.
This form of assert
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b)
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
This method has been deprecated in favor of macro assertion and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.
if the Option[String]
is Some
.
Assert that an Option[String]
is None
.
Assert that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestFailedException
with the String
value of the Some
, as well as the
String
obtained by invoking toString
on the
specified clue
,
included in the TestFailedException
's detail message.
This form of assert
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assert(a === b, "extra info reported if assertion fails")
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
An object whose toString
method returns a message to include in a failure report.
This method has been deprecated in favor of macro assertion and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.
if message
is null
.
if the Option[String]
is Some
.
Assume that an Option[String]
is None
.
Assume that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestCanceledException
with the String
value of the Some
included in the TestCanceledException
's
detail message.
This form of assume
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assume(a === b)
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
This method has been deprecated in favor of macro assumption and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.
if the Option[String]
is Some
.
Assume that an Option[String]
is None
.
Assume that an Option[String]
is None
.
If the condition is None
, this method returns normally.
Else, it throws TestCanceledException
with the String
value of the Some
, as well as the
String
obtained by invoking toString
on the
specified clue
,
included in the TestCanceledException
's detail message.
This form of assume
is usually called in conjunction with an
implicit conversion to Equalizer
, using a ===
comparison, as in:
assume(a === b, "extra info reported if assertion fails")
For more information on how this mechanism works, see the documentation for
Equalizer
.
the Option[String]
to assert
An object whose toString
method returns a message to include in a failure report.
This method has been deprecated in favor of macro assumption and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.
if message
is null
.
if the Option[String]
is Some
.
The evaluating { ... } must produce [...Exception]
syntax has been deprecated and
will be removed in a future version of ScalaTest. Please use a/an [...Exception] must be
thrownBy { ... }
instead.
The evaluating { ... } must produce [...Exception]
syntax has been deprecated and
will be removed in a future version of ScalaTest. Please use a/an [...Exception] must be
thrownBy { ... }
instead.
This method enables syntax such as the following:
evaluating { "hi".charAt(-1) } must produce [StringIndexOutOfBoundsException] ^
Please use 'an [Exception] must be thrownBy { ... }' syntax instead
This expect
method has been deprecated; Please use assertResult
instead.
This expect
method has been deprecated; Please use assertResult
instead.
To get rid of the deprecation warning, simply replace expect
with
assertResult
. The name expect
will be used for a different purposes in
a future version of ScalaTest.
This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of assertResult instead.
This expect
method has been deprecated; Please use assertResult
instead.
This expect
method has been deprecated; Please use assertResult
instead.
To get rid of the deprecation warning, simply replace expect
with
assertResult
. The name expect
will be used for a different purposes in
a future version of ScalaTest.
This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of assertResult instead.
This expectResult
method has been deprecated; Please use assertResult
instead.
This expectResult
method has been deprecated; Please use assertResult
instead.
To get rid of the deprecation warning, simply replace expectResult
with
assertResult
. The name expectResult
will be used for a different purposes in
a future version of ScalaTest.
This expectResult method has been deprecated. Please replace all invocations of expectResult with an identical invocation of assertResult instead.
This expectResult
method has been deprecated; Please use assertResult
instead.
This expectResult
method has been deprecated; Please use assertResult
instead.
To get rid of the deprecation warning, simply replace expectResult
with
assertResult
. The name expectResult
will be used for a different purposes in
a future version of ScalaTest.
This expectResult method has been deprecated. Please replace all invocations of expectResult with an identical invocation of assertResult instead.
Companion object that facilitates the importing of
Matchers
members as an alternative to mixing it the trait. One use case is to importMatchers
members so you can use them in the Scala interpreter.