org.scalatest.path

FreeSpec

class FreeSpec extends FreeSpecLike

A sister class to org.scalatest.FreeSpec that isolates tests by running each test in its own instance of the test class, and for each test, only executing the path leading to that test.

Class path.FreeSpec behaves similarly to class org.scalatest.FreeSpec, except that tests are isolated based on their path. The purpose of path.FreeSpec is to facilitate writing specification-style tests for mutable objects in a clear, boilerpate-free way. To test mutable objects, you need to mutate them. Using a path class, you can make a statement in text, then implement that statement in code (including mutating state), and nest and combine these test/code pairs in any way you wish. Each test will only see the side effects of code that is in blocks that enclose the test. Here's an example:

import org.scalatest.path
import org.scalatest.matchers.ShouldMatchers
import scala.collection.mutable.ListBuffer

class ExampleSpec extends path.FreeSpec with ShouldMatchers {
"A ListBuffer" - {
val buf = ListBuffer.empty[Int] // This implements "A ListBuffer"
"should be empty when created" in {
// This test sees: // val buf = ListBuffer.empty[Int] // So buf is: ListBuffer()
buf should be ('empty) }
"when 1 is appended" - {
buf += 1 // This implements "when 1 is appended", etc...
"should contain 1" in {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // So buf is: ListBuffer(1)
buf.remove(0) should equal (1) buf should be ('empty) }
"when 2 is appended" - {
buf += 2
"should contain 1 and 2" in {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 2 // So buf is: ListBuffer(1, 2)
buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf should be ('empty) }
"when 2 is removed" - {
buf -= 2
"should contain only 1 again" in {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 2 // buf -= 2 // So buf is: ListBuffer(1)
buf.remove(0) should equal (1) buf should be ('empty) } }
"when 3 is appended" - {
buf += 3
"should contain 1, 2, and 3" in {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 2 // buf += 3 // So buf is: ListBuffer(1, 2, 3)
buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf.remove(0) should equal (3) buf should be ('empty) } } }
"when 88 is appended" - {
buf += 88
"should contain 1 and 88" in {
// This test sees: // val buf = ListBuffer.empty[Int] // buf += 1 // buf += 88 // So buf is: ListBuffer(1, 88)
buf.remove(0) should equal (1) buf.remove(0) should equal (88) buf should be ('empty) } } }
"should have size 0 when created" in {
// This test sees: // val buf = ListBuffer.empty[Int] // So buf is: ListBuffer()
buf should have size 0 } } }

Note that the above class is organized by writing a bit of specification text that opens a new block followed by, at the top of the new block, some code that "implements" or "performs" what is described in the text. This is repeated as the mutable object (here, a ListBuffer), is prepared for the enclosed tests. For example:

"A ListBuffer" - {
  val buf = ListBuffer.empty[Int]

Or:

"when 2 is appended" - {
  buf += 2

Note also that although each test mutates the ListBuffer, none of the other tests observe those side effects:

"should contain 1" in {

buf.remove(0) should equal (1) // ... }
"when 2 is appended" - {
buf += 2
"should contain 1 and 2" in {
// This test does not see the buf.remove(0) from the previous test, // so the first element in the ListBuffer is again 1 buf.remove(0) should equal (1) buf.remove(0) should equal (2)

This kind of isolation of tests from each other is a consequence of running each test in its own instance of the test class, and can also be achieved by simply mixing OneInstancePerTest into a regular org.scalatest.FreeSpec. However, path.FreeSpec takes isolation one step further: a test in a path.FreeSpec does not observe side effects performed outside tests in earlier blocks that do not enclose it. Here's an example:

"when 2 is removed" - {

buf -= 2
// ... }
"when 3 is appended" - {
buf += 3
"should contain 1, 2, and 3" in {
// This test does not see the buf -= 2 from the earlier "when 2 is removed" block, // because that block does not enclose this test, so the second element in the // ListBuffer is still 2 buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf.remove(0) should equal (3)

Running the full ExampleSpec, shown above, in the Scala interpeter would give you:

scala> import org.scalatest._
import org.scalatest._

scala> run(new ExampleSpec) ExampleSpec: A ListBuffer - should be empty when created   when 1 is appended   - should contain 1   when 2 is appended   - should contain 1 and 2   when 2 is removed   - should contain only 1 again   when 3 is appended   - should contain 1, 2, and 3   when 88 is appended   - should contain 1 and 88 - should have size 0 when created

Note: class path.FreeSpec's approach to isolation was inspired in part by the specsy framework, written by Esko Luontola.

Shared fixtures

A test fixture is objects or other artifacts (such as files, sockets, database connections, etc.) used by tests to do their work. If a fixture is used by only one test, then the definitions of the fixture objects can be local to the method. If multiple tests need to share an immutable fixture, you can simply assign them to instance variables. If multiple tests need to share mutable fixture objects or vars, there's one and only one way to do it in a path.FreeSpec: place the mutable objects lexically before the test. Any mutations needed by the test must be placed lexically before and/or after the test. As used here, "Lexically before" means that the code needs to be executed during construction of that test's instance of the test class to reach the test (or put another way, the code is along the "path to the test.") "Lexically after" means that the code needs to be executed to exit the constructor after the test has been executed.

The reason lexical placement is the one and only one way to share fixtures in a path.FreeSpec is because all of its lifecycle methods are overridden and declared final. Thus you can't override withFixture, because it is final, or mix in BeforeAndAfter or BeforeAndAfterEach, because both override runTest, which is final in a path.FreeSpec. In short:

In a path.FreeSpec, if you need some code to execute before a test, place that code lexically before the test. If you need some code to execute after a test, place that code lexically after the test.

The reason the life cycle methods are final, by the way, is to prevent users from attempting to combine a path.FreeSpec's approach to isolation with other ways ScalaTest provides to share fixtures or execute tests, because doing so could make the resulting test code hard to reason about. A path.FreeSpec's execution model is a bit magical, but because it executes in one and only one way, users should be able to reason about the code. To help you visualize how a path.FreeSpec is executed, consider the following variant of ExampleSpec that includes print statements:

import org.scalatest.path
import org.scalatest.matchers.ShouldMatchers
import scala.collection.mutable.ListBuffer

class ExampleSpec extends path.FreeSpec with ShouldMatchers {
println("Start of: ExampleSpec") "A ListBuffer" - {
println("Start of: A ListBuffer") val buf = ListBuffer.empty[Int]
"should be empty when created" in {
println("In test: should be empty when created; buf is: " + buf) buf should be ('empty) }
"when 1 is appended" - {
println("Start of: when 1 is appended") buf += 1
"should contain 1" in {
println("In test: should contain 1; buf is: " + buf) buf.remove(0) should equal (1) buf should be ('empty) }
"when 2 is appended" - {
println("Start of: when 2 is appended") buf += 2
"should contain 1 and 2" in {
println("In test: should contain 1 and 2; buf is: " + buf) buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf should be ('empty) }
"when 2 is removed" - {
println("Start of: when 2 is removed") buf -= 2
"should contain only 1 again" in {
println("In test: should contain only 1 again; buf is: " + buf) buf.remove(0) should equal (1) buf should be ('empty) }
println("End of: when 2 is removed") }
"when 3 is appended" - {
println("Start of: when 3 is appended") buf += 3
"should contain 1, 2, and 3" in {
println("In test: should contain 1, 2, and 3; buf is: " + buf) buf.remove(0) should equal (1) buf.remove(0) should equal (2) buf.remove(0) should equal (3) buf should be ('empty) } println("End of: when 3 is appended") }
println("End of: when 2 is appended") }
"when 88 is appended" - {
println("Start of: when 88 is appended") buf += 88
"should contain 1 and 88" in {
println("In test: should contain 1 and 88; buf is: " + buf) buf.remove(0) should equal (1) buf.remove(0) should equal (88) buf should be ('empty) }
println("End of: when 88 is appended") }
println("End of: when 1 is appended") }
"should have size 0 when created" in {
println("In test: should have size 0 when created; buf is: " + buf) buf should have size 0 }
println("End of: A ListBuffer") } println("End of: ExampleSpec") println() }

Running the above version of ExampleSpec in the Scala interpreter will give you output similar to:

scala> import org.scalatest._
import org.scalatest._

scala> run(new ExampleSpec) ExampleSpec: Start of: ExampleSpec Start of: A ListBuffer In test: should be empty when created; buf is: ListBuffer() End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended In test: should contain 1; buf is: ListBuffer(1) ExampleSpec: End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 2 is appended In test: should contain 1 and 2; buf is: ListBuffer(1, 2) End of: when 2 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 2 is appended Start of: when 2 is removed In test: should contain only 1 again; buf is: ListBuffer(1) End of: when 2 is removed End of: when 2 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 2 is appended Start of: when 3 is appended In test: should contain 1, 2, and 3; buf is: ListBuffer(1, 2, 3) End of: when 3 is appended End of: when 2 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer Start of: when 1 is appended Start of: when 88 is appended In test: should contain 1 and 88; buf is: ListBuffer(1, 88) End of: when 88 is appended End of: when 1 is appended End of: A ListBuffer End of: ExampleSpec

Start of: ExampleSpec Start of: A ListBuffer In test: should have size 0 when created; buf is: ListBuffer() End of: A ListBuffer End of: ExampleSpec

A ListBuffer - should be empty when created when 1 is appended   - should contain 1   when 2 is appended   - should contain 1 and 2   when 2 is removed   - should contain only 1 again   when 3 is appended   - should contain 1, 2, and 3   when 88 is appended   - should contain 1 and 88 - should have size 0 when created

Note that each test is executed in order of appearance in the path.FreeSpec, and that only those println statements residing in blocks that enclose the test being run are executed. Any println statements in blocks that do not form the "path" to a test are not executed in the instance of the class that executes that test.

How it executes

To provide its special brand of test isolation, path.FreeSpec executes quite differently from its sister class in org.scalatest. An org.scalatest.FreeSpec registers tests during construction and executes them when run is invoked. An org.scalatest.path.FreeSpec, by contrast, runs each test in its own instance while that instance is being constructed. During construction, it registers not the tests to run, but the results of running those tests. When run is invoked on a path.FreeSpec, it reports the registered results and does not run the tests again. If run is invoked a second or third time, in fact, a path.FreeSpec will each time report the same results registered during construction. If you want to run the tests of a path.FreeSpec anew, you'll need to create a new instance and invoke run on that.

A path.FreeSpec will create one instance for each "leaf" node it contains. The main kind of leaf node is a test, such as:

// One instance will be created for each test
"should be empty when created" in {
  buf should be ('empty)
}

However, an empty scope (a scope that contains no tests or nested scopes) is also a leaf node:

// One instance will be created for each empty scope
"when 99 is added" - {
  // A scope is "empty" and therefore a leaf node if it has no
  // tests or nested scopes, though it may have other code (which
  // will be executed in the instance created for that leaf node)
  buf += 99
}

The tests will be executed sequentially, in the order of appearance. The first test (or empty scope, if that is first) will be executed when a class that mixes in path.FreeSpec is instantiated. Only the first test will be executed during this initial instance, and of course, only the path to that test. Then, the first time the client uses the initial instance (by invoking one of run, expectedTestsCount, tags, or testNames on the instance), the initial instance will, before doing anything else, ensure that any remaining tests are executed, each in its own instance.

To ensure that the correct path is taken in each instance, and to register its test results, the initial path.FreeSpec instance must communicate with the other instances it creates for running any subsequent leaf nodes. It does so by setting a thread-local variable prior to creating each instance (a technique suggested by Esko Luontola). Each instance of path.FreeSpec checks the thread-local variable. If the thread-local is not set, it knows it is an initial instance and therefore executes every block it encounters until it discovers, and executes the first test (or empty scope, if that's the first leaf node). It then discovers, but does not execute the next leaf node, or discovers there are no other leaf nodes remaining to execute. It communicates the path to the next leaf node, if any, and the result of running the test it did execute, if any, back to the initial instance. The initial instance repeats this process until all leaf nodes have been executed and all test results registered.

Ignored tests

You mark a test as ignored in an org.scalatest.path.FreeSpec in the same manner as in an org.scalatest.FreeSpec. Please see the Ignored tests section in its documentation for more information.

Note that a separate instance will be created for an ignored test, and the path to the ignored test will be executed in that instance, but the test function itself will not be executed. Instead, a TestIgnored event will be fired.

Informers

You output information using Informers in an org.scalatest.path.FreeSpec in the same manner as in an org.scalatest.FreeSpec. Please see the Informers section in its documentation for more information.

Pending tests

You mark a test as pending in an org.scalatest.path.FreeSpec in the same manner as in an org.scalatest.FreeSpec. Please see the Pending tests section in its documentation for more information.

Note that a separate instance will be created for a pending test, and the path to the ignored test will be executed in that instance, as well as the test function (up until it completes abruptly with a TestPendingException).

Tagging tests

You can place tests into groups by tagging them in an org.scalatest.path.FreeSpec in the same manner as in an org.scalatest.FreeSpec. Please see the Tagging tests section in its documentation for more information.

Note that one difference between this class and its sister class org.scalatest.FreeSpec is that because tests are executed at construction time, rather than each time run is invoked, an org.scalatest.path.FreeSpec will always execute all non-ignored tests. When run is invoked on a path.FreeSpec, if some tests are excluded based on tags, the registered results of running those tests will not be reported. (But those tests will have already run and the results registered.) By contrast, because an org.scalatest.FreeSpec only executes tests after run has been called, and at that time the tags to include and exclude are known, only tests selected by the tags will be executed.

In short, in an org.scalatest.FreeSpec, tests not selected by the tags to include and exclude specified for the run (via the Filter passed to run) will not be executed. In an org.scalatest.path.FreeSpec, by contrast, all non-ignored tests will be executed, each during the construction of its own instance, and tests not selected by the tags to include and exclude specified for a run will not be reported. (One upshot of this is that if you have tests that you want to tag as being slow so you can sometimes exclude them during a run, you probably don't want to put them in a path.FreeSpec. Because in a path.Freespec the slow tests will be run regardless, with only their registered results not being reported if you exclude slow tests during a run.)

Shared tests

You can factor out shared tests in an org.scalatest.path.FreeSpec in the same manner as in an org.scalatest.FreeSpec. Please see the Shared tests section in its documentation for more information.

Nested suites

Nested suites are not allowed in a path.FreeSpec. Because a path.FreeSpec executes tests eagerly at construction time, registering the results of those test runs and reporting them later when run is invoked, the order of nested suites versus test runs would be different in a org.scalatest.path.FreeSpec than in an org.scalatest.FreeSpec. In org.scalatest.FreeSpec's implementation of run, nested suites are executed then tests are executed. A org.scalatest.path.FreeSpec with nested suites would execute these in the opposite order: first tests then nested suites. To help make path.FreeSpec code easier to reason about by giving readers of one less difference to think about, nested suites are not allowed. If you want to add nested suites to a path.FreeSpec, you can instead wrap them all in a Suites or Specs object. They will be executed in the order of appearance (unless a Distributor is passed, in which case they will execute in parallel).

Durations

Many ScalaTest events include a duration that indicates how long the event being reported took to execute. For example, a TestSucceeded event provides a duration indicating how long it took for that test to execute. A SuiteCompleted event provides a duration indicating how long it took for that entire suite of tests to execute.

In the test completion events fired by a path.FreeSpec (TestSucceeded, TestFailed, or TestPending), the durations reported refer to the time it took for the tests to run. This time is registered with the test results and reported along with the test results each time run is invoked. By contrast, the suite completion events fired for a path.FreeSpec represent the amount of time it took to report the registered results. (These events are not fired by path.FreeSpec, but instead by the entity that invokes run on the path.FreeSpec.) As a result, the total time for running the tests of a path.FreeSpec, calculated by summing the durations of all the individual test completion events, may be greater than the duration reported for executing the entire suite.

Source
FreeSpec.scala
Linear Supertypes
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. FreeSpec
  2. FreeSpecLike
  3. Documenting
  4. Alerting
  5. Notifying
  6. Informing
  7. OneInstancePerTest
  8. SuiteMixin
  9. Suite
  10. Serializable
  11. AbstractSuite
  12. Assertions
  13. TripleEquals
  14. TripleEqualsSupport
  15. AnyRef
  16. Any
  1. Hide All
  2. Show all
Learn more about member selection
Visibility
  1. Public
  2. All

Instance Constructors

  1. new FreeSpec()

Type Members

  1. class AssertionsHelper extends AnyRef

    Helper class used by code generated by the assert macro.

  2. class CheckingEqualizer[L] extends AnyRef

    Class used via an implicit conversion to enable two objects to be compared with === and !== with a Boolean result and an enforced type constraint between two object types.

  3. class Equalizer[L] extends AnyRef

    Class used via an implicit conversion to enable any two objects to be compared with === and !== with a Boolean result and no enforced type constraint between two object types.

  4. final class FreeSpecStringWrapper extends AnyRef

    A class that via an implicit conversion (named convertToFreeSpecStringWrapper) enables methods in, is, taggedAs and ignore, as well as the dash operator (-), to be invoked on Strings.

  5. class LegacyCheckingEqualizer[L] extends AnyRef

    Class used via an implicit conversion to enable any two objects to be compared with === and !== with an Option[String] result and an enforced type constraint between two object types.

  6. class LegacyEqualizer[L] extends AnyRef

    Class used via an implicit conversion to enable any two objects to be compared with === and !== with an Option[String] result and no enforced type constraint between two object types.

  7. trait NoArgTest extends () ⇒ Outcome with TestData

    A test function taking no arguments and returning an Outcome.

  8. final class ResultOfTaggedAsInvocationOnString extends AnyRef

    Class that supports the registration of tagged tests.

Value Members

  1. final def !=(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  2. final def !=(arg0: Any): Boolean

    Definition Classes
    Any
  3. def !==[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]

    Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should !== (<pivot> +- <tolerance>)” syntax of Matchers.

    Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should !== (<pivot> +- <tolerance>)” syntax of Matchers.

    right

    the Spread[T] against which to compare the left-hand value

    returns

    a TripleEqualsInvocationOnSpread wrapping the passed Spread[T] value, with expectingEqual set to false.

    Definition Classes
    TripleEqualsSupport
  4. def !==(right: Null): TripleEqualsInvocation[Null]

    Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should !== null” syntax of Matchers.

    Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should !== null” syntax of Matchers.

    right

    a null reference

    returns

    a TripleEqualsInvocation wrapping the passed null value, with expectingEqual set to false.

    Definition Classes
    TripleEqualsSupport
  5. def !==[T](right: T): TripleEqualsInvocation[T]

    Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should !== <right>” syntax of Matchers.

    Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should !== <right>” syntax of Matchers.

    right

    the right-hand side value for an equality assertion

    returns

    a TripleEqualsInvocation wrapping the passed right value, with expectingEqual set to false.

    Definition Classes
    TripleEqualsSupport
  6. final def ##(): Int

    Definition Classes
    AnyRef → Any
  7. final def ==(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  8. final def ==(arg0: Any): Boolean

    Definition Classes
    Any
  9. def ===[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]

    Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should === (<pivot> +- <tolerance>)” syntax of Matchers.

    Returns a TripleEqualsInvocationOnSpread[T], given an Spread[T], to facilitate the “<left> should === (<pivot> +- <tolerance>)” syntax of Matchers.

    right

    the Spread[T] against which to compare the left-hand value

    returns

    a TripleEqualsInvocationOnSpread wrapping the passed Spread[T] value, with expectingEqual set to true.

    Definition Classes
    TripleEqualsSupport
  10. def ===(right: Null): TripleEqualsInvocation[Null]

    Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should === null” syntax of Matchers.

    Returns a TripleEqualsInvocation[Null], given a null reference, to facilitate the “<left> should === null” syntax of Matchers.

    right

    a null reference

    returns

    a TripleEqualsInvocation wrapping the passed null value, with expectingEqual set to true.

    Definition Classes
    TripleEqualsSupport
  11. def ===[T](right: T): TripleEqualsInvocation[T]

    Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should === <right>” syntax of Matchers.

    Returns a TripleEqualsInvocation[T], given an object of type T, to facilitate the “<left> should === <right>” syntax of Matchers.

    right

    the right-hand side value for an equality assertion

    returns

    a TripleEqualsInvocation wrapping the passed right value, with expectingEqual set to true.

    Definition Classes
    TripleEqualsSupport
  12. def alert: Alerter

    Returns an Alerter that during test execution will forward strings passed to its apply method to the current reporter.

    Returns an Alerter that during test execution will forward strings passed to its apply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while this path.FreeSpec is being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FreeSpecLikeAlerting
  13. final def asInstanceOf[T0]: T0

    Definition Classes
    Any
  14. def assert(condition: Boolean, clue: Any): Unit

    Assert that a boolean condition, described in String message, is true.

    Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with the String obtained by invoking toString on the specified clue as the exception's detail message.

    condition

    the boolean condition to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Annotations
    @macroImpl()
    Exceptions thrown
    NullPointerException

    if message is null.

    TestFailedException

    if the condition is false.

  15. def assert(condition: Boolean): Unit

    Assert that a boolean condition is true.

    Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for simple quality checks of this form:

    • assert(a == b)
    • assert(a != b)
    • assert(a === b)
    • assert(a !== b)

    Any other form of expression will just get a plain-old TestFailedException at this time. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean, not Option[String] to be the default in tests. This makes === consistent between tests and production code. If you have pre-existing code you wrote under ScalaTest 1.x, in which you are expecting=== to return an Option[String], use can get that behavior back by mixing in trait LegacyTripleEquals.

    condition

    the boolean condition to assert

    Definition Classes
    Assertions
    Annotations
    @macroImpl()
    Exceptions thrown
    TestFailedException

    if the condition is false.

  16. def assertResult(expected: Any)(actual: Any): Unit

    Assert that the value passed as expected equals the value passed as actual.

    Assert that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), assertResult returns normally. Else, assertResult throws a TestFailedException whose detail message includes the expected and actual values.

    expected

    the expected value

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
    Exceptions thrown
    TestFailedException

    if the passed actual value does not equal the passed expected value.

  17. def assertResult(expected: Any, clue: Any)(actual: Any): Unit

    Assert that the value passed as expected equals the value passed as actual.

    Assert that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), assertResult returns normally. Else, if actual is not equal to expected, assertResult throws a TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed clue.

    expected

    the expected value

    clue

    An object whose toString method returns a message to include in a failure report.

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
    Exceptions thrown
    TestFailedException

    if the passed actual value does not equal the passed expected value.

  18. def assertTypeError(code: String): Unit

    Asserts that a given string snippet of code does not pass the Scala type checker.

    Asserts that a given string snippet of code does not pass the Scala type checker.

    Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's Assertions trait includes the following syntax for that purpose:

    assertTypeError("val a: String = 1")
    

    Although assertTypeError is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string type checks, errors (i.e., snippets of code that do type check) are reported as test failures at runtime.

    code

    the snippet of code that should not type check

    Definition Classes
    Assertions
    Annotations
    @macroImpl()
  19. val assertionsHelper: AssertionsHelper

    Helper instance used by code generated by macro assertion.

    Helper instance used by code generated by macro assertion.

    Definition Classes
    Assertions
  20. def assume(condition: Boolean, clue: Any): Unit

    Assume that a boolean condition, described in String message, is true.

    Assume that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException with the String obtained by invoking toString on the specified clue as the exception's detail message.

    condition

    the boolean condition to assume

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Annotations
    @macroImpl()
    Exceptions thrown
    NullPointerException

    if message is null.

    TestCanceledException

    if the condition is false.

  21. def assume(condition: Boolean): Unit

    Assume that a boolean condition is true.

    Assume that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for simple quality checks of this form:

    • assume(a == b)
    • assume(a != b)
    • assume(a === b)
    • assume(a !== b)

    Any other form of expression will just get a plain-old TestCanceledException at this time. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean, not Option[String] to be the default in tests. This makes === consistent between tests and production code. If you have pre-existing code you wrote under ScalaTest 1.x, in which you are expecting=== to return an Option[String], use can get that behavior back by mixing in trait LegacyTripleEquals.

    condition

    the boolean condition to assume

    Definition Classes
    Assertions
    Annotations
    @macroImpl()
    Exceptions thrown
    TestCanceledException

    if the condition is false.

  22. val behave: BehaveWord

    Supports shared test registration in path.FreeSpecs.

    Supports shared test registration in path.FreeSpecs.

    This field enables syntax such as the following:

    behave like nonFullStack(stackWithOneItem)
    ^
    

    For more information and examples of the use of <cod>behave, see the Shared tests section in the main documentation for sister trait org.scalatest.FreeSpec.

    Attributes
    protected
    Definition Classes
    FreeSpecLike
  23. def cancel(cause: Throwable): Nothing

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestCanceledException will return cause.toString.

    cause

    a Throwable that indicates the cause of the cancellation.

    Definition Classes
    Assertions
    Exceptions thrown
    NullPointerException

    if cause is null

  24. def cancel(message: String, cause: Throwable): Nothing

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown
    NullPointerException

    if message or cause is null

  25. def cancel(message: String): Nothing

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    message

    A message describing the cancellation.

    Definition Classes
    Assertions
    Exceptions thrown
    NullPointerException

    if message is null

  26. def cancel(): Nothing

    Throws TestCanceledException to indicate a test was canceled.

    Throws TestCanceledException to indicate a test was canceled.

    Definition Classes
    Assertions
  27. def clone(): AnyRef

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  28. def conversionCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], cnv: (B) ⇒ A): Constraint[A, B]

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that B is implicitly convertible to A, given an implicit Equivalence[A].

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that B is implicitly convertible to A, given an implicit Equivalence[A].

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[A]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits ConversionCheckedTripleEquals) and ConversionCheckedLegacyTripleEquals, and overriden as non-implicit by the other subtraits in this package.

    equivalenceOfA

    an Equivalence[A] type class to which the Constraint.areEqual method will delegate to determine equality.

    cnv

    an implicit conversion from B to A

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[A].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  29. def convertEquivalenceToAToBConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: <:<[A, B]): Constraint[A, B]

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that A must be a subtype of B, given an explicit Equivalence[B].

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that A must be a subtype of B, given an explicit Equivalence[B].

    This method is used to enable the Explicitly DSL for TypeCheckedTripleEquals by requiring an explicit Equivalance[B], but taking an implicit function that provides evidence that A is a subtype of B.

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[B]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits LowPriorityTypeCheckedConstraint (extended by TypeCheckedTripleEquals), and LowPriorityTypeCheckedLegacyConstraint (extended by TypeCheckedLegacyTripleEquals), and overriden as non-implicit by the other subtraits in this package.

    equivalenceOfB

    an Equivalence[B] type class to which the Constraint.areEqual method will delegate to determine equality.

    ev

    evidence that A is a subype of B

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[B].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  30. def convertEquivalenceToAToBConversionConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: (A) ⇒ B): Constraint[A, B]

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that A is implicitly convertible to B, given an explicit Equivalence[B].

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that A is implicitly convertible to B, given an explicit Equivalence[B].

    This method is used to enable the Explicitly DSL for ConversionCheckedTripleEquals by requiring an explicit Equivalance[B], but taking an implicit function that converts from A to B.

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[B]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits LowPriorityConversionCheckedConstraint (extended by ConversionCheckedTripleEquals), and LowPriorityConversionCheckedLegacyConstraint (extended by ConversionCheckedLegacyTripleEquals), and overriden as non-implicit by the other subtraits in this package.

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[B].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  31. def convertEquivalenceToBToAConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: <:<[B, A]): Constraint[A, B]

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that B must be a subtype of A, given an explicit Equivalence[A].

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that B must be a subtype of A, given an explicit Equivalence[A].

    This method is used to enable the Explicitly DSL for TypeCheckedTripleEquals by requiring an explicit Equivalance[B], but taking an implicit function that provides evidence that A is a subtype of B. For example, under TypeCheckedTripleEquals, this method (as an implicit method), would be used to compile this statement:

    def closeEnoughTo1(num: Double): Boolean =
      (num === 1.0)(decided by forgivingEquality)
    

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[A]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits TypeCheckedTripleEquals) and TypeCheckedLegacyTripleEquals, and overriden as non-implicit by the other subtraits in this package.

    ev

    evidence that B is a subype of A

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[A].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  32. def convertEquivalenceToBToAConversionConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: (B) ⇒ A): Constraint[A, B]

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that B is implicitly convertible to A, given an explicit Equivalence[A].

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that B is implicitly convertible to A, given an explicit Equivalence[A].

    This method is used to enable the Explicitly DSL for ConversionCheckedTripleEquals by requiring an explicit Equivalance[A], but taking an implicit function that converts from B to A. For example, under ConversionCheckedTripleEquals, this method (as an implicit method), would be used to compile this statement:

    def closeEnoughTo1(num: Double): Boolean =
      (num === 1.0)(decided by forgivingEquality)
    

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[A]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits ConversionCheckedTripleEquals) and ConversionCheckedLegacyTripleEquals, and overriden as non-implicit by the other subtraits in this package.

    equivalenceOfA

    an Equivalence[A] type class to which the Constraint.areEqual method will delegate to determine equality.

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[A].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  33. def convertToCheckingEqualizer[T](left: T): CheckingEqualizer[T]

    Converts to an CheckingEqualizer that provides === and !== operators that result in Boolean and enforce a type constraint.

    Converts to an CheckingEqualizer that provides === and !== operators that result in Boolean and enforce a type constraint.

    This method is overridden and made implicit by subtraits TypeCheckedTripleEquals and ConversionCheckedTripleEquals, and overriden as non-implicit by the other subtraits in this package.

    left

    the object whose type to convert to CheckingEqualizer.

    Definition Classes
    TripleEqualsTripleEqualsSupport
    Exceptions thrown
    NullPointerException

    if left is null.

  34. implicit def convertToEqualizer[T](left: T): Equalizer[T]

    Converts to an Equalizer that provides === and !== operators that result in Boolean and enforce no type constraint.

    Converts to an Equalizer that provides === and !== operators that result in Boolean and enforce no type constraint.

    This method is overridden and made implicit by subtrait TripleEquals and overriden as non-implicit by the other subtraits in this package.

    left

    the object whose type to convert to Equalizer.

    Definition Classes
    TripleEqualsTripleEqualsSupport
    Exceptions thrown
    NullPointerException

    if left is null.

  35. implicit def convertToFreeSpecStringWrapper(s: String): FreeSpecStringWrapper

    Implicitly converts Strings to FreeSpecStringWrapper, which enables methods in, is, taggedAs and ignore, as well as the dash operator (-), to be invoked on Strings.

    Implicitly converts Strings to FreeSpecStringWrapper, which enables methods in, is, taggedAs and ignore, as well as the dash operator (-), to be invoked on Strings.

    Attributes
    protected
    Definition Classes
    FreeSpecLike
  36. def convertToLegacyCheckingEqualizer[T](left: T): LegacyCheckingEqualizer[T]

    Converts to a LegacyCheckingEqualizer that provides === and !== operators that result in Option[String] and enforce a type constraint.

    Converts to a LegacyCheckingEqualizer that provides === and !== operators that result in Option[String] and enforce a type constraint.

    This method is overridden and made implicit by subtraits TypeCheckedLegacyTripleEquals and ConversionCheckedLegacyTripleEquals, and overriden as non-implicit by the other subtraits in this package.

    left

    the object whose type to convert to LegacyCheckingEqualizer.

    Definition Classes
    TripleEqualsTripleEqualsSupport
    Exceptions thrown
    NullPointerException

    if left is null.

  37. def convertToLegacyEqualizer[T](left: T): LegacyEqualizer[T]

    Converts to a LegacyEqualizer that provides === and !== operators that result in Option[String] and enforce no type constraint.

    Converts to a LegacyEqualizer that provides === and !== operators that result in Option[String] and enforce no type constraint.

    This method is overridden and made implicit by subtrait LegacyTripleEquals and overriden as non-implicit by the other subtraits in this package.

    left

    the object whose type to convert to LegacyEqualizer.

    Definition Classes
    TripleEqualsTripleEqualsSupport
    Exceptions thrown
    NullPointerException

    if left is null.

  38. def defaultEquality[A]: Equality[A]

    Returns an Equality[A] for any type A that determines equality by first calling .deep on any Array (on either the left or right side), then comparing the resulting objects with ==.

    Returns an Equality[A] for any type A that determines equality by first calling .deep on any Array (on either the left or right side), then comparing the resulting objects with ==.

    returns

    a default Equality for type A

    Definition Classes
    TripleEqualsSupport
  39. final def eq(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  40. def equals(arg0: Any): Boolean

    Definition Classes
    AnyRef → Any
  41. final def execute: Unit

    Executes this Suite, printing results to the standard output.

    Executes this Suite, printing results to the standard output.

    This method, which simply invokes the other overloaded form of execute with default parameter values, is intended for use only as a mini-DSL for the Scala interpreter. It allows you to execute a Suite in the interpreter with a minimum of finger typing:

    scala> new SetSpec execute
    An empty Set
    - should have size 0
    - should produce NoSuchElementException when head is invoked !!! IGNORED !!!
    

    If you do ever want to invoke execute outside the Scala interpreter, it is best style to invoke it with empty parens to indicate it has a side effect, like this:

    // Use empty parens form in regular code (outside the Scala interpreter)
    (new ExampleSuite).execute()
    

    Definition Classes
    Suite
  42. final def execute(testName: String = null, configMap: ConfigMap = ConfigMap.empty, color: Boolean = true, durations: Boolean = false, shortstacks: Boolean = false, fullstacks: Boolean = false, stats: Boolean = false): Unit

    Executes one or more tests in this Suite, printing results to the standard output.

    Executes one or more tests in this Suite, printing results to the standard output.

    This method invokes run on itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:

    The testName parameter

    If you leave testName at its default value (of null), this method will pass None to the testName parameter of run, and as a result all the tests in this suite will be executed. If you specify a testName, this method will pass Some(testName) to run, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:

    scala> new ExampleSuite execute
    

    (The above syntax actually invokes the overloaded parameterless form of execute, which calls this form with its default parameter values.) To run just the test named "my favorite test" in a suite from the Scala interpreter, you would write:

    scala> new ExampleSuite execute ("my favorite test")
    

    Or:

    scala> new ExampleSuite execute (testName = "my favorite test")
    

    The configMap parameter

    If you provide a value for the configMap parameter, this method will pass it to run. If not, the default value of an empty Map will be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:

    scala> new ExampleSuite execute (configMap = Map("inputFileName" -> "in.txt")
    

    The color parameter

    If you leave the color parameter unspecified, this method will configure the reporter it passes to run to print to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color, like this:

    scala> new ExampleSuite execute (color = false)
    

    The durations parameter

    If you leave the durations parameter unspecified, this method will configure the reporter it passes to run to not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations, like this:

    scala> new ExampleSuite execute (durations = true)
    

    The shortstacks and fullstacks parameters

    If you leave both the shortstacks and fullstacks parameters unspecified, this method will configure the reporter it passes to run to not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for shortstacks:

    scala> new ExampleSuite execute (shortstacks = true)
    

    For full stack traces, set fullstacks to true:

    scala> new ExampleSuite execute (fullstacks = true)
    

    If you specify true for both shortstacks and fullstacks, you'll get full stack traces.

    The stats parameter

    If you leave the stats parameter unspecified, this method will not fire RunStarting and either RunCompleted or RunAborted events to the reporter it passes to run. If you specify true for stats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:

    scala> new ExampleSuite execute (stats = true)
    

    To summarize, this method will pass to run:

    • testName - None if this method's testName parameter is left at its default value of null, else Some(testName).
    • reporter - a reporter that prints to the standard output
    • stopper - a Stopper whose apply method always returns false
    • filter - a Filter constructed with None for tagsToInclude and Set() for tagsToExclude
    • configMap - the configMap passed to this method
    • distributor - None
    • tracker - a new Tracker

    Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named run is that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run, this method would have the same name but different arguments than the main run method that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)

    Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName is null. Normally in Scala the type of testName would be Option[String] and the default value would be None, as it is in this trait's run method. The null value is used here for two reasons. First, in ScalaTest 1.5, execute was changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code, testName needed to have type String, as it did in two of the overloaded execute methods prior to 1.5. The other reason is that execute has always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. A String type with a null default value lets users type suite.execute("my test name") rather than suite.execute(Some("my test name")), saving several keystrokes.

    The second non-idiomatic feature is that shortstacks and fullstacks are all lower case rather than camel case. This is done to be consistent with the Shell, which also uses those forms. The reason lower case is used in the Shell is to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTest Shell, methods like shortstacks, fullstacks, and nostats, etc., are designed to be all lower case so they feel more like shell commands than methods.

    testName

    the name of one test to run.

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    color

    a boolean that configures whether output is printed in color

    durations

    a boolean that configures whether test and suite durations are printed to the standard output

    shortstacks

    a boolean that configures whether short stack traces should be printed for test failures

    fullstacks

    a boolean that configures whether full stack traces should be printed for test failures

    stats

    a boolean that configures whether test and suite statistics are printed to the standard output

    Definition Classes
    Suite
    Exceptions thrown
    IllegalArgumentException

    if testName is defined, but no test with the specified test name exists in this Suite

    NullPointerException

    if the passed configMap parameter is null.

  43. final def expectedTestCount(filter: Filter): Int

    The total number of tests that are expected to run when this path.FreeSpec's run method is invoked.

    The total number of tests that are expected to run when this path.FreeSpec's run method is invoked.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation of this method returns the size of the testNames List, minus the number of tests marked as ignored as well as any tests excluded by the passed Filter.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    filter

    a Filter with which to filter tests to count based on their tags

    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite
  44. def fail(cause: Throwable): Nothing

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString.

    cause

    a Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown
    NullPointerException

    if cause is null

  45. def fail(message: String, cause: Throwable): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown
    NullPointerException

    if message or cause is null

  46. def fail(message: String): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    message

    A message describing the failure.

    Definition Classes
    Assertions
    Exceptions thrown
    NullPointerException

    if message is null

  47. def fail(): Nothing

    Throws TestFailedException to indicate a test failed.

    Throws TestFailedException to indicate a test failed.

    Definition Classes
    Assertions
  48. def finalize(): Unit

    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws()
  49. final def getClass(): Class[_]

    Definition Classes
    AnyRef → Any
  50. def hashCode(): Int

    Definition Classes
    AnyRef → Any
  51. def info: Informer

    Returns an Informer that during test execution will forward strings (and other objects) passed to its apply method to the current reporter.

    Returns an Informer that during test execution will forward strings (and other objects) passed to its apply method to the current reporter. If invoked in a constructor (including within a test, since those are invoked during construction in a path.FreeSpec, it will register the passed string for forwarding later when run is invoked. If invoked from inside a test function, it will record the information and forward it to the current reporter only after the test completed, as recordedEvents of the test completed event, such as TestSucceeded. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FreeSpecLikeInforming
  52. def intercept[T <: AnyRef](f: ⇒ Any)(implicit manifest: Manifest[T]): T

    Intercept and return an exception that's expected to be thrown by the passed function value.

    Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    f

    the function value that should throw the expected exception

    manifest

    an implicit Manifest representing the type of the specified type parameter.

    returns

    the intercepted exception, if it is of the expected type

    Definition Classes
    Assertions
    Exceptions thrown
    TestFailedException

    if the passed function does not complete abruptly with an exception that's an instance of the specified type passed expected value.

  53. final def isInstanceOf[T0]: Boolean

    Definition Classes
    Any
  54. def lowPriorityConversionCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], cnv: (A) ⇒ B): Constraint[A, B]

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that A is implicitly convertible to B, given an implicit Equivalence[B].

    Provides a Constraint[A, B] class for any two types A and B, enforcing the type constraint that A is implicitly convertible to B, given an implicit Equivalence[B].

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[B]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits LowPriorityConversionCheckedConstraint (extended by ConversionCheckedTripleEquals), and LowPriorityConversionCheckedLegacyConstraint (extended by ConversionCheckedLegacyTripleEquals), and overriden as non-implicit by the other subtraits in this package.

    cnv

    an implicit conversion from A to B

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[B].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  55. def lowPriorityTypeCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], ev: <:<[A, B]): Constraint[A, B]

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that A must be a subtype of B, given an implicit Equivalence[B].

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that A must be a subtype of B, given an implicit Equivalence[B].

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[A]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits LowPriorityTypeCheckedConstraint (extended by TypeCheckedTripleEquals), and LowPriorityTypeCheckedLegacyConstraint (extended by TypeCheckedLegacyTripleEquals), and overriden as non-implicit by the other subtraits in this package.

    equivalenceOfB

    an Equivalence[B] type class to which the Constraint.areEqual method will delegate to determine equality.

    ev

    evidence that A is a subype of B

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[B].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  56. def markup: Documenter

    Returns a Documenter that during test execution will forward strings (and other objects) passed to its apply method to the current reporter.

    Returns a Documenter that during test execution will forward strings (and other objects) passed to its apply method to the current reporter. If invoked in a constructor (including within a test, since those are invoked during construction in a path.FreeSpec, it will register the passed string for forwarding later when run is invoked. If invoked from inside a test function, it will record the information and forward it to the current reporter only after the test completed, as recordedEvents of the test completed event, such as TestSucceeded. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FreeSpecLikeDocumenting
  57. final def ne(arg0: AnyRef): Boolean

    Definition Classes
    AnyRef
  58. final def nestedSuites: IndexedSeq[Suite]

    Returns an empty list.

    Returns an empty list.

    This lifecycle method is unused by this trait. If invoked, it will return an empty list, because nested suites are not allowed in a path.FreeSpec. Because a path.FreeSpec executes tests eagerly at construction time, registering the results of those test runs and reporting them later, the order of nested suites versus test runs would be different in a org.scalatest.path.FreeSpec than in an org.scalatest.FreeSpec. In an org.scalatest.FreeSpec, nested suites are executed then tests are executed. In an org.scalatest.path.FreeSpec it would be the opposite. To make the code easy to reason about, therefore, this is just not allowed. If you want to add nested suites to a path.FreeSpec, you can instead wrap them all in a Suites or Specs object and put them in whatever order you wish.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite
  59. def newInstance: FreeSpec

    Construct a new instance of this Suite.

    Construct a new instance of this Suite.

    This trait's implementation of runTests invokes this method to create a new instance of this Suite for each test. This trait's implementation of this method uses reflection to call this.getClass.newInstance. This approach will succeed only if this Suite's class has a public, no-arg constructor. In most cases this is likely to be true, because to be instantiated by ScalaTest's Runner a Suite needs a public, no-arg constructor. However, this will not be true of any Suite defined as an inner class of another class or trait, because every constructor of an inner class type takes a reference to the enclosing instance. In such cases, and in cases where a Suite class is explicitly defined without a public, no-arg constructor, you will need to override this method to construct a new instance of the Suite in some other way.

    Here's an example of how you could override newInstance to construct a new instance of an inner class:

    import org.scalatest.Suite
    
    class Outer { class InnerSuite extends Suite with OneInstancePerTest { def testOne() {} def testTwo() {} override def newInstance = new InnerSuite } }

    Definition Classes
    FreeSpecLikeOneInstancePerTest
  60. def note: Notifier

    Returns a Notifier that during test execution will forward strings passed to its apply method to the current reporter.

    Returns a Notifier that during test execution will forward strings passed to its apply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while this path.FreeSpec is being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FreeSpecLikeNotifying
  61. final def notify(): Unit

    Definition Classes
    AnyRef
  62. final def notifyAll(): Unit

    Definition Classes
    AnyRef
  63. def pending: PendingNothing

    Throws TestPendingException to indicate a test is pending.

    Throws TestPendingException to indicate a test is pending.

    A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

    To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

    Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or FunSpec to be denoted by placing "(pending)" after the test name, as in:

    test("that style rules are not laws") (pending)
    

    Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

    Definition Classes
    Suite
  64. def pendingUntilFixed(f: ⇒ Unit): Unit

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, a pendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

    This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedException with a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

    f

    a block of code, which if it completes abruptly, should trigger a TestPendingException

    Definition Classes
    Suite
    Exceptions thrown
    TestPendingException

    if the passed block of code completes abruptly with an Exception or AssertionError

  65. def rerunner: Option[String]

    The fully qualified class name of the rerunner to rerun this suite.

    The fully qualified class name of the rerunner to rerun this suite. This implementation will look at this.getClass and see if it is either an accessible Suite, or it has a WrapWith annotation. If so, it returns the fully qualified class name wrapped in a Some, or else it returns None.

    Definition Classes
    SuiteAbstractSuite
  66. final def run(testName: Option[String], args: Args): Status

    Runs this path.FreeSpec, reporting test results that were registered when the tests were run, each during the construction of its own instance.

    Runs this path.FreeSpec, reporting test results that were registered when the tests were run, each during the construction of its own instance.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    If testName is None, this trait's implementation of this method will report the registered results for all tests except any excluded by the passed Filter. If testName is defined, it will report the results of only that named test. Because a path.FreeSpec is not allowed to contain nested suites, this trait's implementation of this method does not call runNestedSuites.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests and nested suites started by this method have completed, and whether or not a failure occurred.

    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite
    Exceptions thrown
    IllegalArgumentException

    if testName is defined, but no test with the specified test name exists in this Suite

    NullPointerException

    if any passed parameter is null.

  67. final def run(testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker): Status

    This overloaded form of run has been deprecated and will be removed in a future version of ScalaTest. Please use the run method that takes two parameters instead.

    This overloaded form of run has been deprecated and will be removed in a future version of ScalaTest. Please use the run method that takes two parameters instead.

    This final implementation of this method constructs a Args instance from the passed reporter, stopper, filter, configMap, distributor, and tracker, and invokes the overloaded run method that takes two parameters, passing in the specified testName and the newly constructed Args. This method implementation enables existing code that called into the old run method to continue to work during the deprecation cycle. Subclasses and subtraits that overrode this method, however, will need to be changed to use the new two-parameter form instead.

    testName

    an optional name of one test to execute. If None, all relevant tests should be executed. I.e., None acts like a wildcard that means execute all relevant tests in this Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be executed by another entity, such as concurrently by a pool of threads. If None, nested Suites will be executed sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    Definition Classes
    AbstractSuite
    Exceptions thrown
    NullPointerException

    if any passed parameter is null.

  68. final def runNestedSuites(args: Args): Status

    This lifecycle method is unused by this trait, and is implemented to do nothing.

    This lifecycle method is unused by this trait, and is implemented to do nothing. If invoked, it will just return immediately.

    Nested suites are not allowed in a path.FreeSpec. Because a path.FreeSpec executes tests eagerly at construction time, registering the results of those test runs and reporting them later, the order of nested suites versus test runs would be different in a org.scalatest.path.FreeSpec than in an org.scalatest.FreeSpec. In an org.scalatest.FreeSpec, nested suites are executed then tests are executed. In an org.scalatest.path.FreeSpec it would be the opposite. To make the code easy to reason about, therefore, this is just not allowed. If you want to add nested suites to a path.FreeSpec, you can instead wrap them all in a Suites or Specs object and put them in whatever order you wish.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    args

    the Args for this run

    returns

    a Status object that indicates when all nested suites started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite
  69. final def runTest(testName: String, args: Args): Status

    Runs a test.

    Runs a test.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation reports the test results registered with the name specified by testName. Each test's name is a concatenation of the text of all describers surrounding a test, from outside in, and the test's spec text, with one space placed between each item. (See the documentation for testNames for an example.)

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    testName

    the name of one test to execute.

    args

    the Args for this run

    returns

    a Status object that indicates when the test started by this method has completed, and whether or not it failed .@throws NullPointerException if any of testName, reporter, stopper, or configMap is null.

    Attributes
    protected
    Definition Classes
    FreeSpecLikeOneInstancePerTestSuiteMixinSuiteAbstractSuite
  70. final def runTests(testName: Option[String], args: Args): Status

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    FreeSpecLikeOneInstancePerTestSuiteMixinSuiteAbstractSuite
  71. final val styleName: String

    Suite style name.

    Suite style name.

    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite
  72. def suiteId: String

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    This trait's implementation of this method returns the fully qualified name of this object's class. Each suite reported during a run will commonly be an instance of a different Suite class, and in such cases, this default implementation of this method will suffice. However, in special cases you may need to override this method to ensure it is unique for each reported suite. For example, if you write a Suite subclass that reads in a file whose name is passed to its constructor and dynamically creates a suite of tests based on the information in that file, you will likely need to override this method in your Suite subclass, perhaps by appending the pathname of the file to the fully qualified class name. That way if you run a suite of tests based on a directory full of these files, you'll have unique suite IDs for each reported suite.

    The suite ID is intended to be unique, because ScalaTest does not enforce that it is unique. If it is not unique, then you may not be able to uniquely identify a particular test of a particular suite. This ability is used, for example, to dynamically tag tests as having failed in the previous run when rerunning only failed tests.

    returns

    this Suite object's ID.

    Definition Classes
    Suite
  73. def suiteName: String

    A user-friendly suite name for this Suite.

    A user-friendly suite name for this Suite.

    This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of runNestedSuites calls this method to obtain a name for Reports to pass to the suiteStarting, suiteCompleted, and suiteAborted methods of the Reporter.

    returns

    this Suite object's suite name.

    Definition Classes
    Suite
  74. final def synchronized[T0](arg0: ⇒ T0): T0

    Definition Classes
    AnyRef
  75. final def tags: Map[String, Set[String]]

    A Map whose keys are String tag names to which tests in this path.FreeSpec belong, and values the Set of test names that belong to each tag.

    A Map whose keys are String tag names to which tests in this path.FreeSpec belong, and values the Set of test names that belong to each tag. If this path.FreeSpec contains no tags, this method returns an empty Map.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation returns tags that were passed as strings contained in Tag objects passed to methods test and ignore.

    In addition, this trait's implementation will also auto-tag tests with class level annotations. For example, if you annotate @Ignore at the class level, all test methods in the class will be auto-annotated with @Ignore.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite
  76. def testDataFor(testName: String, theConfigMap: ConfigMap = ConfigMap.empty): TestData

    Provides a TestData instance for the passed test name, given the passed config map.

    Provides a TestData instance for the passed test name, given the passed config map.

    This method is used to obtain a TestData instance to pass to withFixture(NoArgTest) and withFixture(OneArgTest) and the beforeEach and afterEach methods of trait BeforeAndAfterEach.

    testName

    the name of the test for which to return a TestData instance

    theConfigMap

    the config map to include in the returned TestData

    returns

    a TestData instance for the specified test, which includes the specified config map

    Definition Classes
    FreeSpecLikeSuiteMixinSuite
  77. final def testNames: Set[String]

    An immutable Set of test names.

    An immutable Set of test names. If this FreeSpec contains no tests, this method returns an empty Set.

    This trait's implementation of this method will first ensure that the results of all tests, each run its its own instance executing only the path to the test, are registered. For details on this process see the How it executes section in the main documentation for this trait.

    This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered. Each test's name is composed of the concatenation of the text of each surrounding describer, in order from outside in, and the text of the example itself, with all components separated by a space. For example, consider this FreeSpec:

    import org.scalatest.path
    
    class StackSpec extends path.FreeSpec { "A Stack" - { "when not empty" - { "must allow me to pop" in {} } "when not full" - { "must allow me to push" in {} } } }

    Invoking testNames on this FreeSpec will yield a set that contains the following two test name strings:

    "A Stack when not empty must allow me to pop"
    "A Stack when not full must allow me to push"
    

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite
  78. def toString(): String

    Returns a user friendly string for this suite, composed of the simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite contains nested suites, the result of invoking toString on each of the nested suites, separated by commas and surrounded by parentheses.

    Returns a user friendly string for this suite, composed of the simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite contains nested suites, the result of invoking toString on each of the nested suites, separated by commas and surrounded by parentheses.

    returns

    a user-friendly string for this suite

    Definition Classes
    FreeSpec → AnyRef → Any
  79. def trap[T](f: ⇒ T): Throwable

    Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException indicating no exception is thrown.

    Trap and return any thrown exception that would normally cause a ScalaTest test to fail, or create and return a new RuntimeException indicating no exception is thrown.

    This method is intended to be used in the Scala interpreter to eliminate large stack traces when trying out ScalaTest assertions and matcher expressions. It is not intended to be used in regular test code. If you want to ensure that a bit of code throws an expected exception, use intercept, not trap. Here's an example interpreter session without trap:

    scala> import org.scalatest._
    import org.scalatest._

    scala> import Matchers._ import Matchers._

    scala> val x = 12 a: Int = 12

    scala> x shouldEqual 13 org.scalatest.exceptions.TestFailedException: 12 did not equal 13 at org.scalatest.Assertions$class.newAssertionFailedException(Assertions.scala:449) at org.scalatest.Assertions$.newAssertionFailedException(Assertions.scala:1203) at org.scalatest.Assertions$AssertionsHelper.macroAssertTrue(Assertions.scala:417) at .<init>(<console>:15) at .<clinit>(<console>) at .<init>(<console>:7) at .<clinit>(<console>) at $print(<console>) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at scala.tools.nsc.interpreter.IMain$ReadEvalPrint.call(IMain.scala:731) at scala.tools.nsc.interpreter.IMain$Request.loadAndRun(IMain.scala:980) at scala.tools.nsc.interpreter.IMain.loadAndRunReq$1(IMain.scala:570) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:601) at scala.tools.nsc.interpreter.IMain.interpret(IMain.scala:565) at scala.tools.nsc.interpreter.ILoop.reallyInterpret$1(ILoop.scala:745) at scala.tools.nsc.interpreter.ILoop.interpretStartingWith(ILoop.scala:790) at scala.tools.nsc.interpreter.ILoop.command(ILoop.scala:702) at scala.tools.nsc.interpreter.ILoop.processLine$1(ILoop.scala:566) at scala.tools.nsc.interpreter.ILoop.innerLoop$1(ILoop.scala:573) at scala.tools.nsc.interpreter.ILoop.loop(ILoop.scala:576) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply$mcZ$sp(ILoop.scala:867) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822) at scala.tools.nsc.interpreter.ILoop$$anonfun$process$1.apply(ILoop.scala:822) at scala.tools.nsc.util.ScalaClassLoader$.savingContextLoader(ScalaClassLoader.scala:135) at scala.tools.nsc.interpreter.ILoop.process(ILoop.scala:822) at scala.tools.nsc.MainGenericRunner.runTarget$1(MainGenericRunner.scala:83) at scala.tools.nsc.MainGenericRunner.process(MainGenericRunner.scala:96) at scala.tools.nsc.MainGenericRunner$.main(MainGenericRunner.scala:105) at scala.tools.nsc.MainGenericRunner.main(MainGenericRunner.scala)

    That's a pretty tall stack trace. Here's what it looks like when you use trap:

    scala> trap { x shouldEqual 13 }
    res1: Throwable = org.scalatest.exceptions.TestFailedException: 12 did not equal 13
    

    Much less clutter. Bear in mind, however, that if no exception is thrown by the passed block of code, the trap method will create a new NormalResult (a subclass of Throwable made for this purpose only) and return that. If the result was the Unit value, it will simply say that no exception was thrown:

    scala> trap { x shouldEqual 12 }
    res2: Throwable = No exception was thrown.
    

    If the passed block of code results in a value other than Unit, the NormalResult's toString will print the value:

    scala> trap { "Dude!" }
    res3: Throwable = No exception was thrown. Instead, result was: "Dude!"
    

    Although you can access the result value from the NormalResult, its type is Any and therefore not very convenient to use. It is not intended that trap be used in test code. The sole intended use case for trap is decluttering Scala interpreter sessions by eliminating stack traces when executing assertion and matcher expressions.

    Definition Classes
    Assertions
  80. def typeCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], ev: <:<[B, A]): Constraint[A, B]

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that B must be a subtype of A, given an implicit Equivalence[A].

    Provides a Constraint[A, B] for any two types A and B, enforcing the type constraint that B must be a subtype of A, given an implicit Equivalence[A].

    The returned Constraint's areEqual method uses the implicitly passed Equivalence[A]'s areEquivalent method to determine equality.

    This method is overridden and made implicit by subtraits TypeCheckedTripleEquals) and TypeCheckedLegacyTripleEquals, and overriden as non-implicit by the other subtraits in this package.

    ev

    evidence that B is a subype of A

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEquivalent method of the passed Equivalence[A].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  81. implicit def unconstrainedEquality[A, B](implicit equalityOfA: Equality[A]): Constraint[A, B]

    Provides a Constraint[A, B] class for any two types A and B, with no type constraint enforced, given an implicit Equality[A].

    Provides a Constraint[A, B] class for any two types A and B, with no type constraint enforced, given an implicit Equality[A].

    The returned Constraint's areEqual method uses the implicitly passed Equality[A]'s areEqual method to determine equality.

    This method is overridden and made implicit by subtraits TripleEquals and LegacyTripleEquals, and overriden as non-implicit by the other subtraits in this package.

    equalityOfA

    an Equality[A] type class to which the Constraint.areEqual method will delegate to determine equality.

    returns

    a Constraint[A, B] whose areEqual method delegates to the areEqual method of the passed Equality[A].

    Definition Classes
    TripleEqualsTripleEqualsSupport
  82. final def wait(): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  83. final def wait(arg0: Long, arg1: Int): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  84. final def wait(arg0: Long): Unit

    Definition Classes
    AnyRef
    Annotations
    @throws()
  85. def withClue[T](clue: Any)(fun: ⇒ T): T

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

    This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

    withClue("(Employee's name was: " + employee.name + ")") {
      intercept[IllegalArgumentException] {
        employee.getTask(-1)
      }
    }
    

    If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

    (Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
    

    Definition Classes
    Assertions
    Exceptions thrown
    NullPointerException

    if the passed clue is null

  86. final def withFixture(test: NoArgTest): Outcome

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This lifecycle method is unused by this trait, and will complete abruptly with UnsupportedOperationException if invoked.

    This trait's implementation of this method is marked as final. For insight onto why, see the Shared fixtures section in the main documentation for this trait.

    test

    unused

    Definition Classes
    FreeSpecLikeSuiteMixinSuiteAbstractSuite

Deprecated Value Members

  1. def assert(o: Option[String]): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b)
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This method has been deprecated in favor of macro assertion and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.

    Exceptions thrown
    TestFailedException

    if the Option[String] is Some.

  2. def assert(o: Option[String], clue: Any): Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the String value of the Some, as well as the String obtained by invoking toString on the specified clue, included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b, "extra info reported if assertion fails")
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    clue

    An object whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This method has been deprecated in favor of macro assertion and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.

    Exceptions thrown
    NullPointerException

    if message is null.

    TestFailedException

    if the Option[String] is Some.

  3. def assume(o: Option[String]): Unit

    Assume that an Option[String] is None.

    Assume that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestCanceledException with the String value of the Some included in the TestCanceledException's detail message.

    This form of assume is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assume(a === b)
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This method has been deprecated in favor of macro assumption and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.

    Exceptions thrown
    TestCanceledException

    if the Option[String] is Some.

  4. def assume(o: Option[String], clue: Any): Unit

    Assume that an Option[String] is None.

    Assume that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestCanceledException with the String value of the Some, as well as the String obtained by invoking toString on the specified clue, included in the TestCanceledException's detail message.

    This form of assume is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assume(a === b, "extra info reported if assertion fails")
    

    For more information on how this mechanism works, see the documentation for Equalizer.

    o

    the Option[String] to assert

    clue

    An object whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This method has been deprecated in favor of macro assumption and will be removed in a future version of ScalaTest. If you need this, please copy the source code into your own trait instead.

    Exceptions thrown
    NullPointerException

    if message is null.

    TestCanceledException

    if the Option[String] is Some.

  5. def expect(expected: Any)(actual: Any): Unit

    This expect method has been deprecated; Please use assertResult instead.

    This expect method has been deprecated; Please use assertResult instead.

    To get rid of the deprecation warning, simply replace expect with assertResult. The name expect will be used for a different purposes in a future version of ScalaTest.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of assertResult instead.

  6. def expect(expected: Any, clue: Any)(actual: Any): Unit

    This expect method has been deprecated; Please use assertResult instead.

    This expect method has been deprecated; Please use assertResult instead.

    To get rid of the deprecation warning, simply replace expect with assertResult. The name expect will be used for a different purposes in a future version of ScalaTest.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This expect method has been deprecated. Please replace all invocations of expect with an identical invocation of assertResult instead.

  7. def expectResult(expected: Any)(actual: Any): Unit

    This expectResult method has been deprecated; Please use assertResult instead.

    This expectResult method has been deprecated; Please use assertResult instead.

    To get rid of the deprecation warning, simply replace expectResult with assertResult. The name expectResult will be used for a different purposes in a future version of ScalaTest.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This expectResult method has been deprecated. Please replace all invocations of expectResult with an identical invocation of assertResult instead.

  8. def expectResult(expected: Any, clue: Any)(actual: Any): Unit

    This expectResult method has been deprecated; Please use assertResult instead.

    This expectResult method has been deprecated; Please use assertResult instead.

    To get rid of the deprecation warning, simply replace expectResult with assertResult. The name expectResult will be used for a different purposes in a future version of ScalaTest.

    Definition Classes
    Assertions
    Annotations
    @deprecated
    Deprecated

    This expectResult method has been deprecated. Please replace all invocations of expectResult with an identical invocation of assertResult instead.

Inherited from FreeSpecLike

Inherited from Documenting

Inherited from Alerting

Inherited from Notifying

Inherited from Informing

Inherited from OneInstancePerTest

Inherited from SuiteMixin

Inherited from Suite

Inherited from Serializable

Inherited from AbstractSuite

Inherited from Assertions

Inherited from TripleEquals

Inherited from TripleEqualsSupport

Inherited from AnyRef

Inherited from Any

Ungrouped