org.scalatest.fixture

FixtureSpec

trait FixtureSpec extends FixtureSuite

A sister trait to org.scalatest.Spec, which passes a fixture object into each test.

This trait behaves similarly to trait org.scalatest.Spec, except that tests may take a fixture object. The type of the fixture object passed is defined by the abstract FixtureParam type, which is declared as a member of this trait (inherited from supertrait FixtureSuite). This trait also inherits the abstract method withFixture from supertrait FixtureSuite. The withFixture method takes a OneArgTest, which is a nested trait defined as a member of supertrait FixtureSuite.OneArgTest has an apply method that takes a FixtureParam. This apply method is responsible for running a test. This trait's runTest method delegates the actual running of each test to withFixture, passing in the test code to run via the OneArgTest argument. The withFixture method (abstract in this trait) is responsible for creating the fixture and passing it to the test function.

Subclasses of this trait must, therefore, do three things differently from a plain old org.scalatest.Spec:

Here's an example:

import org.scalatest.fixture.FixtureSpec
import java.io.FileReader
import java.io.FileWriter
import java.io.File

class MySpec extends FixtureSpec {

// 1. define type FixtureParam type FixtureParam = FileReader

// 2. define the withFixture method def withFixture(test: OneArgTest) {

val FileName = "TempFile.txt"

// Set up the temp file needed by the test val writer = new FileWriter(FileName) try { writer.write("Hello, test!") } finally { writer.close() }

// Create the reader needed by the test val reader = new FileReader(FileName)

try { // Run the test using the temp file test(reader) } finally { // Close and delete the temp file reader.close() val file = new File(FileName) file.delete() } }

// 3. write tests that take a fixture parameter it("should read from the temp file") { reader => var builder = new StringBuilder var c = reader.read() while (c != -1) { builder.append(c.toChar) c = reader.read() } assert(builder.toString === "Hello, test!") }

it("should read the first char of the temp file") { reader => assert(reader.read() === 'H') }

// (You can also write tests that don't take a fixture parameter.) it("should work without a fixture") { () => assert(1 + 1 === 2) } }

If the fixture you want to pass into your tests consists of multiple objects, you will need to combine them into one object to use this trait. One good approach to passing multiple fixture objects is to encapsulate them in a tuple. Here's an example that takes the tuple approach:

import org.scalatest.fixture.FixtureSpec
import scala.collection.mutable.ListBuffer

class MySpec extends FixtureSpec {

type FixtureParam = (StringBuilder, ListBuffer[String])

def withFixture(test: OneArgTest) {

// Create needed mutable objects val stringBuilder = new StringBuilder("ScalaTest is ") val listBuffer = new ListBuffer[String]

// Invoke the test function, passing in the mutable objects test(stringBuilder, listBuffer) }

it("should mutate shared fixture objects") { fixture => val (builder, buffer) = fixture builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" }

it("should get a fresh set of mutable fixture objects") { fixture => val (builder, buffer) = fixture builder.append("fun!") assert(builder.toString === "ScalaTest is fun!") assert(buffer.isEmpty) } }

When using a tuple to pass multiple fixture objects, it is usually helpful to give names to each individual object in the tuple with a pattern-match assignment, as is done at the beginning of each test here with:

val (builder, buffer) = fixture

Another good approach to passing multiple fixture objects is to encapsulate them in a case class. Here's an example that takes the case class approach:

import org.scalatest.fixture.FixtureSpec
import scala.collection.mutable.ListBuffer

class MySpec extends FixtureSpec {

case class FixtureHolder(builder: StringBuilder, buffer: ListBuffer[String])

type FixtureParam = FixtureHolder

def withFixture(test: OneArgTest) {

// Create needed mutable objects val stringBuilder = new StringBuilder("ScalaTest is ") val listBuffer = new ListBuffer[String]

// Invoke the test function, passing in the mutable objects test(FixtureHolder(stringBuilder, listBuffer)) }

it("should mutate shared fixture objects") { fixture => import fixture._ builder.append("easy!") assert(builder.toString === "ScalaTest is easy!") assert(buffer.isEmpty) buffer += "sweet" }

it("should get a fresh set of mutable fixture objects") { fixture => fixture.builder.append("fun!") assert(fixture.builder.toString === "ScalaTest is fun!") assert(fixture.buffer.isEmpty) } }

When using a case class to pass multiple fixture objects, it can be helpful to make the names of each individual object available as a single identifier with an import statement. This is the approach taken by the testEasy method in the previous example. Because it imports the members of the fixture object, the test code can just use them as unqualified identifiers:

it("should mutate shared fixture objects") { fixture =>
  import fixture._
  builder.append("easy!")
  assert(builder.toString === "ScalaTest is easy!")
  assert(buffer.isEmpty)
  buffer += "sweet"
}

Alternatively, you may sometimes prefer to qualify each use of a fixture object with the name of the fixture parameter. This approach, taken by the testFun method in the previous example, makes it more obvious which variables in your test are part of the passed-in fixture:

it("should mutate shared fixture objects") { fixture =>
  fixture.builder.append("fun!")
  assert(fixture.builder.toString === "ScalaTest is fun!")
  assert(fixture.buffer.isEmpty)
}

Configuring fixtures and tests

Sometimes you may want to write tests that are configurable. For example, you may want to write a suite of tests that each take an open temp file as a fixture, but whose file name is specified externally so that the file name can be can be changed from run to run. To accomplish this the OneArgTest trait has a configMapmethod, which will return a Map[String, Any] from which configuration information may be obtained. The runTest method of this trait will pass a OneArgTest to withFixturewhose configMap method returns the configMap passed to runTest. Here's an example in which the name of a temp file is taken from the passed configMap:

import org.scalatest.fixture.FixtureSpec
import java.io.FileReader
import java.io.FileWriter
import java.io.File

class MySpec extends FixtureSpec {

type FixtureParam = FileReader

def withFixture(test: OneArgTest) {

require( test.configMap.contains("TempFileName"), "This suite requires a TempFileName to be passed in the configMap" )

// Grab the file name from the configMap val FileName = test.configMap("TempFileName").asInstanceOf[String]

// Set up the temp file needed by the test val writer = new FileWriter(FileName) try { writer.write("Hello, test!") } finally { writer.close() }

// Create the reader needed by the test val reader = new FileReader(FileName)

try { // Run the test using the temp file test(reader) } finally { // Close and delete the temp file reader.close() val file = new File(FileName) file.delete() } }

test("reading from the temp file") { reader => var builder = new StringBuilder var c = reader.read() while (c != -1) { builder.append(c.toChar) c = reader.read() } assert(builder.toString === "Hello, test!") }

test("first char of the temp file") { reader => assert(reader.read() === 'H') } }

If you want to pass into each test the entire configMap that was passed to runTest, you can mix in trait ConfigMapFixture. See the documentation for ConfigMapFixture for the details, but here's a quick example of how it looks:

 import org.scalatest.fixture.FixtureSpec
 import org.scalatest.fixture.ConfigMapFixture

class MySpec extends FixtureSpec with ConfigMapFixture {

it("should contain hello") { configMap => // Use the configMap passed to runTest in the test assert(configMap.contains("hello")) }

it("should contain world") { configMap => assert(configMap.contains("world")) } }

ConfigMapFixture can also be used to facilitate writing FixtureSpecs that include tests that take different fixture types. See the documentation for MultipleFixtureSpec for more information.

linear super types: FixtureSuite, Suite, AbstractSuite, Assertions, AnyRef, Any
known subclasses: MultipleFixtureSpec
self type: FixtureSpec
Ordering
  1. Alphabetic
  2. By inheritance
Inherited
  1. Hide All
  2. Show all
  1. FixtureSpec
  2. FixtureSuite
  3. Suite
  4. AbstractSuite
  5. Assertions
  6. AnyRef
  7. Any
Visibility
  1. Public
  2. All
Impl.
  1. Concrete
  2. Abstract

Type Members

  1. class Equalizer extends AnyRef

    Class used via an implicit conversion to enable any two objects to be compared with=== in assertions in tests.

  2. type FixtureParam

    The type of the fixture parameter that can be passed into tests in this suite.

    The type of the fixture parameter that can be passed into tests in this suite.

    attributes: protected abstract
    definition classes: FixtureSuite
  3. class ItWord extends AnyRef

    Class that, via an instance referenced from the it field, supports test (and shared test) registration in FixtureSpecs.

  4. trait NoArgTest extends () ⇒ Unit

    A test function taking no arguments, which also provides a test name and config map.

  5. trait OneArgTest extends (FixtureParam) ⇒ Unit

    Trait whose instances encapsulate a test function that takes a fixture and config map.

Value Members

  1. def != (arg0: AnyRef) : Boolean

    attributes: final
    definition classes: AnyRef
  2. def != (arg0: Any) : Boolean

    o != arg0 is the same as !(o == (arg0)).

    o != arg0 is the same as !(o == (arg0)).

    arg0

    the object to compare against this object for dis-equality.

    returns

    false if the receiver object is equivalent to the argument; true otherwise.

    attributes: final
    definition classes: Any
  3. def ## () : Int

    attributes: final
    definition classes: AnyRef → Any
  4. def $asInstanceOf [T0] () : T0

    attributes: final
    definition classes: AnyRef
  5. def $isInstanceOf [T0] () : Boolean

    attributes: final
    definition classes: AnyRef
  6. def == (arg0: AnyRef) : Boolean

    o == arg0 is the same as if (o eq null) arg0 eq null else o.equals(arg0).

    o == arg0 is the same as if (o eq null) arg0 eq null else o.equals(arg0).

    arg0

    the object to compare against this object for equality.

    returns

    true if the receiver object is equivalent to the argument; false otherwise.

    attributes: final
    definition classes: AnyRef
  7. def == (arg0: Any) : Boolean

    o == arg0 is the same as o.equals(arg0).

    o == arg0 is the same as o.equals(arg0).

    arg0

    the object to compare against this object for equality.

    returns

    true if the receiver object is equivalent to the argument; false otherwise.

    attributes: final
    definition classes: Any
  8. def asInstanceOf [T0] : T0

    This method is used to cast the receiver object to be of type T0.

    This method is used to cast the receiver object to be of type T0.

    Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression1.asInstanceOf[String] will throw a ClassCastException at runtime, while the expressionList(1).asInstanceOf[List[String]] will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested typed.

    returns

    the receiver object.

    attributes: final
    definition classes: Any
  9. def assert (o: Option[String]) : Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the Stringvalue of the Some included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b)

    For more information on how this mechanism works, see the documentation forEqualizer.

    o

    the Option[String] to assert

    definition classes: Assertions
  10. def assert (o: Option[String], clue: Any) : Unit

    Assert that an Option[String] is None.

    Assert that an Option[String] is None. If the condition is None, this method returns normally. Else, it throws TestFailedException with the Stringvalue of the Some, as well as theString obtained by invoking toString on the specified message, included in the TestFailedException's detail message.

    This form of assert is usually called in conjunction with an implicit conversion to Equalizer, using a === comparison, as in:

    assert(a === b, "extra info reported if assertion fails")

    For more information on how this mechanism works, see the documentation forEqualizer.

    o

    the Option[String] to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    definition classes: Assertions
  11. def assert (condition: Boolean, clue: Any) : Unit

    Assert that a boolean condition, described in Stringmessage, is true.

    Assert that a boolean condition, described in Stringmessage, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with theString obtained by invoking toString on the specified message as the exception's detail message.

    condition

    the boolean condition to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    definition classes: Assertions
  12. def assert (condition: Boolean) : Unit

    Assert that a boolean condition is true.

    Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

    condition

    the boolean condition to assert

    definition classes: Assertions
  13. val behave : BehaveWord

    Supports shared test registration in FixtureSpecs.

    Supports shared test registration in FixtureSpecs.

    This field supports syntax such as the following:

    it should behave like nonFullStack(stackWithOneItem)
              

    For more information and examples of the use of <cod>behave</code>, see the Shared tests sectionin the main documentation for trait Spec.

    attributes: protected
  14. def clone () : AnyRef

    This method creates and returns a copy of the receiver object.

    This method creates and returns a copy of the receiver object.

    The default implementation of the clone method is platform dependent.

    returns

    a copy of the receiver object.

    attributes: protected
    definition classes: AnyRef
  15. implicit def convertNoArgToFixtureFunction (fun: () ⇒ Any) : (FixtureParam) ⇒ Any

    Implicitly converts a function that takes no parameters and results in Any to a function from FixtureParam to Any, to enable no-arg tests to registered by methods that require a test function that takes a FixtureParam.

    Implicitly converts a function that takes no parameters and results in Any to a function from FixtureParam to Any, to enable no-arg tests to registered by methods that require a test function that takes a FixtureParam.

    attributes: protected implicit
  16. implicit def convertPendingToFixtureFunction (f: ⇒ PendingNothing) : (FixtureParam) ⇒ Any

    Implicitly converts a function that takes no parameters and results in PendingNothing to a function from FixtureParam to Any, to enable pending tests to registered as by-name parameters by methods that require a test function that takes a FixtureParam.

    Implicitly converts a function that takes no parameters and results in PendingNothing to a function from FixtureParam to Any, to enable pending tests to registered as by-name parameters by methods that require a test function that takes a FixtureParam.

    This method makes it possible to write pending tests as simply (pending), without needing to write (fixture => pending).

    attributes: protected implicit
  17. implicit def convertToEqualizer (left: Any) : Equalizer

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    Implicit conversion from Any to Equalizer, used to enable assertions with === comparisons.

    For more information on this mechanism, see the documentation for </code>Equalizer</code>.

    Because trait Suite mixes in Assertions, this implicit conversion will always be available by default in ScalaTest Suites. This is the only implicit conversion that is in scope by default in every ScalaTest Suite. Other implicit conversions offered by ScalaTest, such as those that support the matchers DSL or invokePrivate, must be explicitly invited into your test code, either by mixing in a trait or importing the members of its companion object. The reason ScalaTest requires you to invite in implicit conversions (with the exception of the implicit conversion for === operator) is because if one of ScalaTest's implicit conversions clashes with an implicit conversion used in the code you are trying to test, your program won't compile. Thus there is a chance that if you are ever trying to use a library or test some code that also offers an implicit conversion involving a === operator, you could run into the problem of a compiler error due to an ambiguous implicit conversion. If that happens, you can turn off the implicit conversion offered by this convertToEqualizer method simply by overriding the method in yourSuite subclass, but not marking it as implicit:

    // In your Suite subclass
    override def convertToEqualizer(left: Any) = new Equalizer(left)

    left

    the object whose type to convert to Equalizer.

    attributes: implicit
    definition classes: Assertions
  18. def describe (description: String)(fun: ⇒ Unit) : Unit

    Describe a &#8220;subject&#8221; being specified and tested by the passed function value.

    Describe a &#8220;subject&#8221; being specified and tested by the passed function value. The passed function value may contain more describers (defined with describe) and/or tests (defined with it). This trait's implementation of this method will register the description string and immediately invoke the passed function.

    attributes: protected
  19. def eq (arg0: AnyRef) : Boolean

    This method is used to test whether the argument (arg0) is a reference to the receiver object (this).

    This method is used to test whether the argument (arg0) is a reference to the receiver object (this).

    The eq method implements an [http://en.wikipedia.org/wiki/Equivalence_relation equivalence relation] on non-null instances of AnyRef: * It is reflexive: for any non-null instance x of type AnyRef, x.eq(x) returns true. * It is symmetric: for any non-null instances x and y of type AnyRef, x.eq(y) returns true if and only if y.eq(x) returns true. * It is transitive: for any non-null instances x, y, and z of type AnyRef if x.eq(y) returns true and y.eq(z) returns true, then x.eq(z) returns true.

    Additionally, the eq method has three other properties. * It is consistent: for any non-null instances x and y of type AnyRef, multiple invocations of x.eq(y) consistently returns true or consistently returns false. * For any non-null instance x of type AnyRef, x.eq(null) and null.eq(x) returns false. * null.eq(null) returns true.

    When overriding the equals or hashCode methods, it is important to ensure that their behavior is consistent with reference equality. Therefore, if two objects are references to each other (o1 eq o2), they should be equal to each other (o1 == o2) and they should hash to the same value (o1.hashCode == o2.hashCode).

    arg0

    the object to compare against this object for reference equality.

    returns

    true if the argument is a reference to the receiver object; false otherwise.

    attributes: final
    definition classes: AnyRef
  20. def equals (arg0: Any) : Boolean

    This method is used to compare the receiver object (this) with the argument object (arg0) for equivalence.

    This method is used to compare the receiver object (this) with the argument object (arg0) for equivalence.

    The default implementations of this method is an [http://en.wikipedia.org/wiki/Equivalence_relation equivalence relation]: * It is reflexive: for any instance x of type Any, x.equals(x) should return true. * It is symmetric: for any instances x and y of type Any, x.equals(y) should return true if and only if y.equals(x) returns true. * It is transitive: for any instances x, y, and z of type AnyRef if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.

    If you override this method, you should verify that your implementation remains an equivalence relation. Additionally, when overriding this method it is often necessary to override hashCode to ensure that objects that are "equal" (o1.equals(o2) returns true) hash to the same scala.Int (o1.hashCode.equals(o2.hashCode)).

    arg0

    the object to compare against this object for equality.

    returns

    true if the receiver object is equivalent to the argument; false otherwise.

    definition classes: AnyRef → Any
  21. def execute (testName: String =null, configMap: Map[String, Any] =Map(), color: Boolean =true, durations: Boolean =false, shortstacks: Boolean =false, fullstacks: Boolean =false, stats: Boolean =false) : Unit

    Executes one or more tests in this Suite, printing results to the standard output.

    Executes one or more tests in this Suite, printing results to the standard output.

    This method invokes run on itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:

    The testName parameter

    If you leave testName at its default value (of null), this method will pass None to the testName parameter of run, and as a result all the tests in this suite will be executed. If you specify a testName, this method will pass Some(testName) to run, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:

    scala> (new MySuite).execute()

    To run just the test named "my favorite test" in a suite from the Scala interpreter, you would write:

    scala> (new MySuite).execute("my favorite test")

    Or:

    scala> (new MySuite).execute(testName = "my favorite test")

    The configMap parameter

    If you provide a value for the configMap parameter, this method will pass it to run. If not, the default value of an empty Map will be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:

    scala> (new MySuite).execute(configMap = Map("inputFileName" -> "in.txt")

    The color parameter

    If you leave the color parameter unspecified, this method will configure the reporter it passes to run to print to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color, like this:

    scala> (new MySuite).execute(color = false)

    The durations parameter

    If you leave the durations parameter unspecified, this method will configure the reporter it passes to run tonot print durations for tests and suites to the standard output. If you want durations printed, specify true for durations, like this:

    scala> (new MySuite).execute(durations = true)

    The shortstacks and fullstacks parameters

    If you leave both the shortstacks and fullstacks parameters unspecified, this method will configure the reporter it passes to run to not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true forshortstacks:

    scala> (new MySuite).execute(shortstacks = true)

    For full stack traces, set fullstacks to true:

    scala> (new MySuite).execute(fullstacks = true)

    If you specify true for both shortstacks and fullstacks, you'll get full stack traces.

    The stats parameter

    If you leave the stats parameter unspecified, this method will not fire RunStarting and either RunCompletedor RunAborted events to the reporter it passes to run. If you specify true for stats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:

    scala> (new MySuite).execute(stats = true)

    To summarize, this method will pass to run:

    • testName - None if this method's testName parameter is left at its default value of null, else Some(testName).
    • reporter - a reporter that prints to the standard output
    • stopper - a Stopper whose apply method always returns false
    • filter - a Filter constructed with None for tagsToInclude and Set() for tagsToExclude
    • configMap - the configMap passed to this method
    • distributor - None
    • tracker - a new Tracker

    Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named run is that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run, this method would have the same name but different arguments than the main run method that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)

    Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName is null. Normally in Scala the type of testName would be Option[String] and the default value would be None, as it is in this trait's run method. The null value is used here for two reasons. First, in ScalaTest 1.5, execute was changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code, testName needed to have type String, as it did in two of the overloadedexecute methods prior to 1.5. The other reason is that execute has always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. A String type with a null default value lets users type suite.execute("my test name") rather thansuite.execute(Some("my test name")), saving several keystrokes.

    The second non-idiomatic feature is that shortstacks and fullstacks are all lower case rather than camel case. This is done to be consistent with the Shell, which also uses those forms. The reason lower case is used in the Shell is to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTestShell, methods like shortstacks, fullstacks, and nostats, etc., are designed to be all lower case so they feel more like shell commands than methods.

    testName

    the name of one test to run.

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    color

    a boolean that configures whether output is printed in color

    durations

    a boolean that configures whether test and suite durations are printed to the standard output

    shortstacks

    a boolean that configures whether short stack traces should be printed for test failures

    fullstacks

    a boolean that configures whether full stack traces should be printed for test failures

    stats

    a boolean that configures whether test and suite statistics are printed to the standard output

    attributes: final
    definition classes: Suite
  22. def expect (expected: Any)(actual: Any) : Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), expect returns normally. Else, expect throws anTestFailedException whose detail message includes the expected and actual values.

    expected

    the expected value

    actual

    the actual value, which should equal the passed expected value

    definition classes: Assertions
  23. def expect (expected: Any, clue: Any)(actual: Any) : Unit

    Expect that the value passed as expected equals the value passed as actual.

    Expect that the value passed as expected equals the value passed as actual. If the actual equals the expected(as determined by ==), expect returns normally. Else, if actual is not equal to expected, expect throws anTestFailedException whose detail message includes the expected and actual values, as well as the Stringobtained by invoking toString on the passed message.

    expected

    the expected value

    clue

    An object whose toString method returns a message to include in a failure report.

    actual

    the actual value, which should equal the passed expected value

    definition classes: Assertions
  24. def expectedTestCount (filter: Filter) : Int

    The total number of tests that are expected to run when this Suite's run method is invoked.

    The total number of tests that are expected to run when this Suite's run method is invoked.

    This trait's implementation of this method returns the sum of:

    • the size of the testNames List, minus the number of tests marked as ignored
    • the sum of the values obtained by invoking expectedTestCount on every nested Suite contained in nestedSuites
    filter

    a Filter with which to filter tests to count based on their tags

    definition classes: SuiteAbstractSuite
  25. def fail (cause: Throwable) : Nothing

    Throws TestFailedException, with the passedThrowable cause, to indicate a test failed.

    Throws TestFailedException, with the passedThrowable cause, to indicate a test failed. The getMessage method of the thrown TestFailedExceptionwill return cause.toString().

    cause

    a Throwable that indicates the cause of the failure.

    definition classes: Assertions
  26. def fail (message: String, cause: Throwable) : Nothing

    Throws TestFailedException, with the passedString message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passedString message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    definition classes: Assertions
  27. def fail (message: String) : Nothing

    Throws TestFailedException, with the passedString message as the exception's detail message, to indicate a test failed.

    Throws TestFailedException, with the passedString message as the exception's detail message, to indicate a test failed.

    message

    A message describing the failure.

    definition classes: Assertions
  28. def fail () : Nothing

    Throws TestFailedException to indicate a test failed.

    Throws TestFailedException to indicate a test failed.

    definition classes: Assertions
  29. def finalize () : Unit

    This method is called by the garbage collector on the receiver object when garbage collection determines that there are no more references to the object.

    This method is called by the garbage collector on the receiver object when garbage collection determines that there are no more references to the object.

    The details of when and if the finalize method are invoked, as well as the interaction between finalizeand non-local returns and exceptions, are all platform dependent.

    attributes: protected
    definition classes: AnyRef
  30. def getClass () : java.lang.Class[_]

    Returns a representation that corresponds to the dynamic class of the receiver object.

    Returns a representation that corresponds to the dynamic class of the receiver object.

    The nature of the representation is platform dependent.

    returns

    a representation that corresponds to the dynamic class of the receiver object.

    attributes: final
    definition classes: AnyRef
  31. def hashCode () : Int

    Returns a hash code value for the object.

    Returns a hash code value for the object.

    The default hashing algorithm is platform dependent.

    Note that it is allowed for two objects to have identical hash codes (o1.hashCode.equals(o2.hashCode)) yet not be equal (o1.equals(o2) returns false). A degenerate implementation could always return 0. However, it is required that if two objects are equal (o1.equals(o2) returns true) that they have identical hash codes (o1.hashCode.equals(o2.hashCode)). Therefore, when overriding this method, be sure to verify that the behavior is consistent with the equals method.

    returns

    the hash code value for the object.

    definition classes: AnyRef → Any
  32. def ignore (specText: String)(testFun: (FixtureParam) ⇒ Any) : Unit

    Register a test to ignore, which has the given spec text and test function value that takes no arguments.

    Register a test to ignore, which has the given spec text and test function value that takes no arguments. This method will register the test for later ignoring via an invocation of one of the executemethods. This method exists to make it easy to ignore an existing test by changing the call to itto ignore without deleting or commenting out the actual test code. The test will not be executed, but a report will be sent that indicates the test was ignored. The name of the test will be a concatenation of the text of all surrounding describers, from outside in, and the passed spec text, with one space placed between each item. (See the documenation for testNames for an example.) The resulting test name must not have been registered previously on this Spec instance.

    specText

    the specification text, which will be combined with the descText of any surrounding describers to form the test name

    testFun

    the test function

    attributes: protected
  33. def ignore (specText: String, testTags: Tag*)(testFun: (FixtureParam) ⇒ Any) : Unit

    Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments.

    Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments. This method will register the test for later ignoring via an invocation of one of the executemethods. This method exists to make it easy to ignore an existing test by changing the call to itto ignore without deleting or commenting out the actual test code. The test will not be executed, but a report will be sent that indicates the test was ignored. The name of the test will be a concatenation of the text of all surrounding describers, from outside in, and the passed spec text, with one space placed between each item. (See the documenation for testNames for an example.) The resulting test name must not have been registered previously on this Spec instance.

    specText

    the specification text, which will be combined with the descText of any surrounding describers to form the test name

    testTags

    the optional list of tags for this test

    testFun

    the test function

    attributes: protected
  34. implicit def info : Informer

    Returns an Informer that during test execution will forward strings (and other objects) passed to itsapply method to the current reporter.

    Returns an Informer that during test execution will forward strings (and other objects) passed to itsapply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while thisFixtureSpec is being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will throw an exception. This method can be called safely by any thread.

    attributes: protected implicit
  35. def intercept [T <: AnyRef] (f: ⇒ Any)(implicit manifest: Manifest[T]) : T

    Intercept and return an exception that's expected to be thrown by the passed function value.

    Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype ofAnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    f

    the function value that should throw the expected exception

    manifest

    an implicit Manifest representing the type of the specified type parameter.

    returns

    the intercepted exception, if it is of the expected type

    definition classes: Assertions
  36. def isInstanceOf [T0] : Boolean

    This method is used to test whether the dynamic type of the receiver object is T0.

    This method is used to test whether the dynamic type of the receiver object is T0.

    Note that the test result of the test is modulo Scala's erasure semantics. Therefore the expression1.isInstanceOf[String] will return false, while the expression List(1).isInstanceOf[List[String]] will return true. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested typed.

    returns

    true if the receiver object is an instance of erasure of type T0; false otherwise.

    attributes: final
    definition classes: Any
  37. val it : ItWord

    Supports test (and shared test) registration in FixtureSpecs.

    Supports test (and shared test) registration in FixtureSpecs.

    This field supports syntax such as the following:

    it("should be empty")

    it should behave like nonFullStack(stackWithOneItem)

    For more information and examples of the use of the it field, see the main documentation for Spec.

    attributes: protected
  38. def ne (arg0: AnyRef) : Boolean

    o.ne(arg0) is the same as !(o.eq(arg0)).

    o.ne(arg0) is the same as !(o.eq(arg0)).

    arg0

    the object to compare against this object for reference dis-equality.

    returns

    false if the argument is not a reference to the receiver object; true otherwise.

    attributes: final
    definition classes: AnyRef
  39. def nestedSuites : List[Suite]

    A List of this Suite object's nested Suites. If this Suite contains no nested Suites, this method returns an empty List. This trait's implementation of this method returns an empty List.

    A List of this Suite object's nested Suites. If this Suite contains no nested Suites, this method returns an empty List. This trait's implementation of this method returns an empty List.

    definition classes: SuiteAbstractSuite
  40. def notify () : Unit

    Wakes up a single thread that is waiting on the receiver object's monitor.

    Wakes up a single thread that is waiting on the receiver object's monitor.

    attributes: final
    definition classes: AnyRef
  41. def notifyAll () : Unit

    Wakes up all threads that are waiting on the receiver object's monitor.

    Wakes up all threads that are waiting on the receiver object's monitor.

    attributes: final
    definition classes: AnyRef
  42. def pending : PendingNothing

    Throws TestPendingException to indicate a test is pending.

    Throws TestPendingException to indicate a test is pending.

    A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

    To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

    Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or Specto be denoted by placing "(pending)" after the test name, as in:

    test("that style rules are not laws") (pending)

    Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

    definition classes: Suite
  43. def pendingUntilFixed (f: ⇒ Unit) : Unit

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, apendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

    This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedExceptionwith a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

    f

    a block of code, which if it completes abruptly, should trigger a TestPendingException

    definition classes: Suite
  44. def run (testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker) : Unit

    Runs this suite of tests.

    Runs this suite of tests.

    If testName is None, this trait's implementation of this method calls these two methods on this object in this order:

    • runNestedSuites(report, stopper, tagsToInclude, tagsToExclude, configMap, distributor)
    • runTests(testName, report, stopper, tagsToInclude, tagsToExclude, configMap)

    If testName is defined, then this trait's implementation of this method calls runTests, but does not call runNestedSuites. This behavior is part of the contract of this method. Subclasses that override run must take care not to call runNestedSuites if testName is defined. (TheOneInstancePerTest trait depends on this behavior, for example.)

    Subclasses and subtraits that override this run method can implement them without invoking either the runTests or runNestedSuites methods, which are invoked by this trait's implementation of this method. It is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runNestedSuites also override runNestedSuites and make it final. Similarly it is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runTests also override runTests (and runTest, which this trait's implementation of runTests calls) and make it final. The implementation of these final methods can either invoke the superclass implementation of the method, or throw an UnsupportedOperationException if appropriate. The reason for this recommendation is that ScalaTest includes several traits that override these methods to allow behavior to be mixed into a Suite. For example, traitBeforeAndAfterEach overrides runTestss. In a Suitesubclass that no longer invokes runTests from run, theBeforeAndAfterEach trait is not applicable. Mixing it in would have no effect. By making runTests final in such a Suite subtrait, you make the attempt to mix BeforeAndAfterEach into a subclass of your subtrait a compiler error. (It would fail to compile with a complaint that BeforeAndAfterEachis trying to override runTests, which is a final method in your trait.)

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    definition classes: FixtureSpecSuiteAbstractSuite
  45. def runNestedSuites (reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker) : Unit

    Run zero to many of this Suite's nested Suites.

    Run zero to many of this Suite's nested Suites.

    If the passed distributor is None, this trait's implementation of this method invokes run on each nested Suite in the List obtained by invoking nestedSuites. If a nested Suite's runmethod completes abruptly with an exception, this trait's implementation of this method reports that the Suite aborted and attempts to run the next nested Suite. If the passed distributor is defined, this trait's implementation puts each nested Suiteinto the Distributor contained in the Some, in the order in which theSuites appear in the List returned by nestedSuites, passing in a new Tracker obtained by invoking nextTracker on the Trackerpassed to this method.

    Implementations of this method are responsible for ensuring SuiteStarting events are fired to the Reporter before executing any nested Suite, and either SuiteCompletedor SuiteAborted after executing any nested Suite.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    attributes: protected
    definition classes: SuiteAbstractSuite
  46. def runTest (testName: String, reporter: Reporter, stopper: Stopper, configMap: Map[String, Any], tracker: Tracker) : Unit

    Run a test.

    Run a test. This trait's implementation runs the test registered with the name specified bytestName. Each test's name is a concatenation of the text of all describers surrounding a test, from outside in, and the test's spec text, with one space placed between each item. (See the documenation for testNames for an example.)

    testName

    the name of one test to execute.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    configMap

    a Map of properties that can be used by this Spec's executing tests.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    attributes: protected
    definition classes: FixtureSpecFixtureSuiteSuiteAbstractSuite
  47. def runTests (testName: Option[String], reporter: Reporter, stopper: Stopper, filter: Filter, configMap: Map[String, Any], distributor: Option[Distributor], tracker: Tracker) : Unit

    Run zero to many of this Spec's tests.

    Run zero to many of this Spec's tests.

    This method takes a testName parameter that optionally specifies a test to invoke. If testName is Some, this trait's implementation of this method invokes runTest on this object, passing in:

    • testName - the String value of the testName Option passed to this method
    • reporter - the Reporter passed to this method, or one that wraps and delegates to it
    • stopper - the Stopper passed to this method, or one that wraps and delegates to it
    • configMap - the configMap passed to this method, or one that wraps and delegates to it

    This method takes a Set of tag names that should be included (tagsToInclude), and a Setthat should be excluded (tagsToExclude), when deciding which of this Suite's tests to execute. If tagsToInclude is empty, all tests will be executed except those those belonging to tags listed in the tagsToExclude Set. If tagsToInclude is non-empty, only tests belonging to tags mentioned in tagsToInclude, and not mentioned in tagsToExcludewill be executed. However, if testName is Some, tagsToInclude and tagsToExclude are essentially ignored. Only if testName is None will tagsToInclude and tagsToExclude be consulted to determine which of the tests named in the testNames Set should be run. For more information on trait tags, see the main documentation for this trait.

    If testName is None, this trait's implementation of this method invokes testNames on this Suite to get a Set of names of tests to potentially execute. (A testNames value of None essentially acts as a wildcard that means all tests in this Suite that are selected by tagsToInclude and tagsToExclude should be executed.) For each test in the testName Set, in the order they appear in the iterator obtained by invoking the elements method on the Set, this trait's implementation of this method checks whether the test should be run based on the tagsToInclude and tagsToExclude Sets. If so, this implementation invokes runTest, passing in:

    • testName - the String name of the test to run (which will be one of the names in the testNames Set)
    • reporter - the Reporter passed to this method, or one that wraps and delegates to it
    • stopper - the Stopper passed to this method, or one that wraps and delegates to it
    • configMap - the configMap passed to this method, or one that wraps and delegates to it
    testName

    an optional name of one test to execute. If None, all relevant tests should be executed. I.e., None acts like a wildcard that means execute all relevant tests in this Spec.

    reporter

    the Reporter to which results will be reported

    stopper

    the Stopper that will be consulted to determine whether to stop execution early.

    filter

    a Filter with which to filter tests based on their tags

    configMap

    a Map of key-value pairs that can be used by this Spec's executing tests.

    distributor

    an optional Distributor, into which to put nested Suites to be run by another entity, such as concurrently by a pool of threads. If None, nested Suites will be run sequentially.

    tracker

    a Tracker tracking Ordinals being fired by the current thread.

    attributes: protected
    definition classes: FixtureSpecSuiteAbstractSuite
  48. def suiteName : String

    A user-friendly suite name for this Suite.

    A user-friendly suite name for this Suite.

    This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of runNestedSuites calls this method to obtain a name for Reports to pass to the suiteStarting, suiteCompleted, and suiteAborted methods of the Reporter.

    returns

    this Suite object's suite name.

    definition classes: Suite
  49. def synchronized [T0] (arg0: T0) : T0

    attributes: final
    definition classes: AnyRef
  50. def tags : Map[String, Set[String]]

    A Map whose keys are String tag names to which tests in this Spec belong, and values the Set of test names that belong to each tag. If this Spec contains no tags, this method returns an empty Map.

    A Map whose keys are String tag names to which tests in this Spec belong, and values the Set of test names that belong to each tag. If this Spec contains no tags, this method returns an empty Map.

    This trait's implementation returns tags that were passed as strings contained in Tag objects passed to methods test and ignore.

    definition classes: FixtureSpecSuiteAbstractSuite
  51. def testNames : Set[String]

    An immutable Set of test names. If this FixtureSpec contains no tests, this method returns an empty Set.

    An immutable Set of test names. If this FixtureSpec contains no tests, this method returns an empty Set.

    This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered. Each test's name is composed of the concatenation of the text of each surrounding describer, in order from outside in, and the text of the example itself, with all components separated by a space.

    definition classes: FixtureSpecFixtureSuiteSuiteAbstractSuite
  52. def toString () : String

    Returns a string representation of the object.

    Returns a string representation of the object.

    The default representation is platform dependent.

    returns

    a string representation of the object.

    definition classes: AnyRef → Any
  53. def wait () : Unit

    attributes: final
    definition classes: AnyRef
  54. def wait (arg0: Long, arg1: Int) : Unit

    attributes: final
    definition classes: AnyRef
  55. def wait (arg0: Long) : Unit

    attributes: final
    definition classes: AnyRef
  56. def withClue (clue: Any)(fun: ⇒ Unit) : Unit

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

    This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

    withClue("(Employee's name was: " + employee.name + ")") {
      intercept[IllegalArgumentException] {
        employee.getTask(-1)
      }
    }

    If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

    (Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown

    definition classes: Assertions
  57. def withFixture (test: NoArgTest) : Unit

    Run the passed test function in the context of a fixture established by this method.

    Run the passed test function in the context of a fixture established by this method.

    This method should set up the fixture needed by the tests of the current suite, invoke the test function, and if needed, perform any clean up needed after the test completes. Because the NoArgTest function passed to this method takes no parameters, preparing the fixture will require side effects, such as reassigning instance vars in this Suite or initializing a globally accessible external database. If you want to avoid reassigning instance vars you can use FixtureSuite.

    This trait's implementation of runTest invokes this method for each test, passing in a NoArgTest whose apply method will execute the code of the test.

    This trait's implementation of this method simply invokes the passed NoArgTest function.

    test

    the no-arg test function to run with a fixture

    attributes: protected
    definition classes: SuiteAbstractSuite
  58. def withFixture (test: OneArgTest) : Unit

    Run the passed test function with a fixture created by this method.

    Run the passed test function with a fixture created by this method.

    This method should create the fixture object needed by the tests of the current suite, invoke the test function (passing in the fixture object), and if needed, perform any clean up needed after the test completes. For more detail and examples, see the main documentation for this trait.

    attributes: protected abstract
    definition classes: FixtureSuite

Inherited from FixtureSuite

Inherited from Suite

Inherited from AbstractSuite

Inherited from Assertions

Inherited from AnyRef

Inherited from Any