Packages

c

org.scalatest.featurespec

FixtureAsyncFeatureSpec

abstract class FixtureAsyncFeatureSpec extends FixtureAsyncFeatureSpecLike

A sister class to org.scalatest.featurespec.AsyncFeatureSpec that can pass a fixture object into its tests.

Recommended Usage: Use class FixtureAsyncFeatureSpec in situations for which AsyncFeatureSpec would be a good choice, when all or most tests need the same fixture objects that must be cleaned up afterwards. Note: FixtureAsyncFeatureSpec is intended for use in special situations, with class AsyncFeatureSpec used for general needs. For more insight into where FixtureAsyncFeatureSpec fits in the big picture, see the withFixture(OneArgAsyncTest) subsection of the Shared fixtures section in the documentation for class AsyncFeatureSpec.

Class FixtureAsyncFeatureSpec behaves similarly to class org.scalatest.featurespec.AsyncFeatureSpec, except that tests may have a fixture parameter. The type of the fixture parameter is defined by the abstract FixtureParam type, which is a member of this class. This class also contains an abstract withFixture method. This withFixture method takes a OneArgAsyncTest, which is a nested trait defined as a member of this class. OneArgAsyncTest has an apply method that takes a FixtureParam. This apply method is responsible for running a test. This class's runTest method delegates the actual running of each test to withFixture(OneArgAsyncTest), passing in the test code to run via the OneArgAsyncTest argument. The withFixture(OneArgAsyncTest) method (abstract in this class) is responsible for creating the fixture argument and passing it to the test function.

Subclasses of this class must, therefore, do three things differently from a plain old org.scalatest.featurespec.AsyncFeatureSpec:

  • define the type of the fixture parameter by specifying type FixtureParam
  • define the withFixture(OneArgAsyncTest) method
  • write tests that take a fixture parameter
  • (You can also define tests that don't take a fixture parameter.)

If the fixture you want to pass into your tests consists of multiple objects, you will need to combine them into one object to use this class. One good approach to passing multiple fixture objects is to encapsulate them in a case class. Here's an example:

case class FixtureParam(file: File, writer: FileWriter)

To enable the stacking of traits that define withFixture(NoArgAsyncTest), it is a good idea to let withFixture(NoArgAsyncTest) invoke the test function instead of invoking the test function directly. To do so, you'll need to convert the OneArgAsyncTest to a NoArgAsyncTest. You can do that by passing the fixture object to the toNoArgAsyncTest method of OneArgAsyncTest. In other words, instead of writing “test(theFixture)”, you'd delegate responsibility for invoking the test function to the withFixture(NoArgAsyncTest) method of the same instance by writing:

withFixture(test.toNoArgAsyncTest(theFixture))

Here's a complete example:

package org.scalatest.examples.asyncfeaturespec.oneargasynctest

import org.scalatest._ import scala.concurrent.Future import scala.concurrent.ExecutionContext
// Defining actor messages sealed abstract class StringOp case object Clear extends StringOp case class Append(value: String) extends StringOp case object GetValue
class StringActor { // Simulating an actor private final val sb = new StringBuilder def !(op: StringOp): Unit = synchronized { op match { case Append(value) => sb.append(value) case Clear => sb.clear() } } def ?(get: GetValue.type)(implicit c: ExecutionContext): Future[String] = Future { synchronized { sb.toString } } }
class ExampleSpec extends featurespec.FixtureAsyncFeatureSpec {
type FixtureParam = StringActor
def withFixture(test: OneArgAsyncTest): FutureOutcome = {
val actor = new StringActor complete { actor ! Append("ScalaTest is designed to ") // set up the fixture withFixture(test.toNoArgAsyncTest(actor)) } lastly { actor ! Clear // ensure the fixture will be cleaned up } }
Feature("Simplicity") { Scenario("User needs to read test code written by others") { actor => actor ! Append("encourage clear code!") val futureString = actor ? GetValue futureString map { s => assert(s === "ScalaTest is designed to encourage clear code!") } }
Scenario("User needs to understand what the tests are doing") { actor => actor ! Append("be easy to reason about!") val futureString = actor ? GetValue futureString map { s => assert(s === "ScalaTest is designed to be easy to reason about!") } } } }

If a test fails, the future returned by the OneArgAsyncTest function will result in an org.scalatest.Failed wrapping the exception describing the failure. To ensure clean up happens even if a test fails, you should invoke the test function and do the cleanup using complete-lastly, as shown in the previous example. The complete-lastly syntax, defined in CompleteLastly, which is extended by AsyncTestSuite, ensures the second, cleanup block of code is executed, whether the the first block throws an exception or returns a future. If it returns a future, the cleanup will be executed when the future completes.

Sharing fixtures across classes

If multiple test classes need the same fixture, you can define the FixtureParam and withFixture(OneArgAsyncTest) implementations in a trait, then mix that trait into the test classes that need it. For example, if your application requires a database and your integration tests use that database, you will likely have many test classes that need a database fixture. You can create a "database fixture" trait that creates a database with a unique name, passes the connector into the test, then removes the database once the test completes. This is shown in the following example:

* package org.scalatest.examples.fixture.asyncfeaturespec.sharing

import java.util.concurrent.ConcurrentHashMap import org.scalatest._ import DbServer._ import java.util.UUID.randomUUID import scala.concurrent.Future
object DbServer { // Simulating a database server type Db = StringBuffer private val databases = new ConcurrentHashMap[String, Db] def createDb(name: String): Db = { val db = new StringBuffer databases.put(name, db) db } def removeDb(name: String) { databases.remove(name) } }
trait DbFixture { this: FixtureAsyncTestSuite =>
type FixtureParam = Db
// Allow clients to populate the database after // it is created def populateDb(db: Db) {}
def withFixture(test: OneArgAsyncTest): FutureOutcome = { val dbName = randomUUID.toString val db = createDb(dbName) // create the fixture complete { populateDb(db) // setup the fixture withFixture(test.toNoArgAsyncTest(db)) // "loan" the fixture to the test } lastly { removeDb(dbName) // ensure the fixture will be cleaned up } } }
class ExampleSpec extends featurespec.FixtureAsyncFeatureSpec with DbFixture {
override def populateDb(db: Db) { // setup the fixture db.append("ScalaTest is ") }
Feature("Simplicity") { Scenario("Testing should be easy to write") { db => Future { db.append("easy to write!") assert(db.toString === "ScalaTest is easy to write!") } }
Scenario("Testing should be fun") { db => Future { db.append("fun to write!") assert(db.toString === "ScalaTest is fun to write!") } }
// This test doesn't need a Db Scenario("Testing code should be clear") { () => Future { val buf = new StringBuffer buf.append("ScalaTest code is ") buf.append("clear!") assert(buf.toString === "ScalaTest code is clear!") } } } }

Often when you create fixtures in a trait like DbFixture, you'll still need to enable individual test classes to "setup" a newly created fixture before it gets passed into the tests. A good way to accomplish this is to pass the newly created fixture into a setup method, like populateDb in the previous example, before passing it to the test function. Classes that need to perform such setup can override the method, as does ExampleSuite.

If a test doesn't need the fixture, you can indicate that by providing a no-arg instead of a one-arg function, as is done in the third test in the previous example, “test code should be clear”. In other words, instead of starting your function literal with something like “db =>”, you'd start it with “() =>”. For such tests, runTest will not invoke withFixture(OneArgAsyncTest). It will instead directly invoke withFixture(NoArgAsyncTest).

Both examples shown above demonstrate the technique of giving each test its own "fixture sandbox" to play in. When your fixtures involve external side-effects, like creating files or databases, it is a good idea to give each file or database a unique name as is done in these examples. This keeps tests completely isolated, allowing you to run them in parallel if desired. You could mix ParallelTestExecution into either of these ExampleSuite classes, and the tests would run in parallel just fine.

Source
FixtureAsyncFeatureSpec.scala
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. FixtureAsyncFeatureSpec
  2. FixtureAsyncFeatureSpecLike
  3. Documenting
  4. Alerting
  5. Notifying
  6. Informing
  7. FixtureAsyncTestRegistration
  8. FixtureAsyncTestSuite
  9. AsyncTestSuite
  10. CompleteLastly
  11. RecoverMethods
  12. FixtureSuite
  13. Suite
  14. Serializable
  15. Assertions
  16. TripleEquals
  17. TripleEqualsSupport
  18. AnyRef
  19. Any
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Instance Constructors

  1. new FixtureAsyncFeatureSpec()

Type Members

  1. trait NoArgAsyncTest extends () => FutureOutcome with TestData

    A test function taking no arguments and returning a FutureOutcome.

    A test function taking no arguments and returning a FutureOutcome.

    For more detail and examples, see the relevant section in the documentation for trait AsyncFlatSpec.

    Definition Classes
    AsyncTestSuite
  2. class ResultOfCompleteInvocation[T] extends AnyRef

    Class that provides the lastly method of the complete-lastly syntax.

    Class that provides the lastly method of the complete-lastly syntax.

    Definition Classes
    CompleteLastly
  3. trait OneArgAsyncTest extends (FixtureParam) => FutureOutcome with TestData

    A test function taking no arguments and returning an FutureOutcome.

    A test function taking no arguments and returning an FutureOutcome.

    For more detail and examples, see the relevant section in the documentation for trait fixture.AsyncFlatSpec.

    Definition Classes
    FixtureAsyncTestSuite
  4. class CheckingEqualizer[L] extends AnyRef
    Definition Classes
    TripleEqualsSupport
  5. class Equalizer[L] extends AnyRef
    Definition Classes
    TripleEqualsSupport
  6. abstract type FixtureParam

    The type of the fixture parameter that can be passed into tests in this suite.

    The type of the fixture parameter that can be passed into tests in this suite.

    Attributes
    protected
    Definition Classes
    FixtureSuite
  7. class ResultOfIgnoreInvocation extends AnyRef
    Definition Classes
    FixtureAsyncFeatureSpecLike
  8. class ResultOfScenarioInvocation extends AnyRef
    Definition Classes
    FixtureAsyncFeatureSpecLike

Abstract Value Members

  1. abstract def withFixture(test: OneArgAsyncTest): FutureOutcome

    Run the passed test function with a fixture created by this method.

    Run the passed test function with a fixture created by this method.

    This method should create the fixture object needed by the tests of the current suite, invoke the test function (passing in the fixture object), and if needed, register any clean up needed after the test completes as a callback on the FutureOutcome returned by the test function. For more detail and examples, see the main documentation for this trait.

    test

    the OneArgAsyncTest to invoke, passing in a fixture

    returns

    an instance of FutureOutcome

    Definition Classes
    FixtureAsyncTestSuite

Concrete Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. def !==[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]
    Definition Classes
    TripleEqualsSupport
  3. def !==(right: Null): TripleEqualsInvocation[Null]
    Definition Classes
    TripleEqualsSupport
  4. def !==[T](right: T): TripleEqualsInvocation[T]
    Definition Classes
    TripleEqualsSupport
  5. final def ##(): Int
    Definition Classes
    AnyRef → Any
  6. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  7. def ===[T](right: Spread[T]): TripleEqualsInvocationOnSpread[T]
    Definition Classes
    TripleEqualsSupport
  8. def ===(right: Null): TripleEqualsInvocation[Null]
    Definition Classes
    TripleEqualsSupport
  9. def ===[T](right: T): TripleEqualsInvocation[T]
    Definition Classes
    TripleEqualsSupport
  10. def Feature(description: String)(fun: => Unit)(implicit pos: Position): Unit

    Describe a “subject” being specified and tested by the passed function value.

    Describe a “subject” being specified and tested by the passed function value. The passed function value may contain more describers (defined with describe) and/or tests (defined with it). This trait's implementation of this method will register the description string and immediately invoke the passed function.

    description

    the description text

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
  11. def Scenario(specText: String, testTags: Tag*): ResultOfScenarioInvocation

    Register a test with the given spec text, optional tags, and test function value that takes no arguments.

    Register a test with the given spec text, optional tags, and test function value that takes no arguments. An invocation of this method is called an “example.”

    This method will register the test for later execution via an invocation of one of the execute methods. The name of the test will be a concatenation of the text of all surrounding describers, from outside in, and the passed spec text, with one space placed between each item. (See the documenation for testNames for an example.) The resulting test name must not have been registered previously on this FixtureAsyncFeatureSpec instance.

    specText

    the specification text, which will be combined with the descText of any surrounding describers to form the test name

    testTags

    the optional list of tags for this test

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
    Exceptions thrown

    DuplicateTestNameException if a test with the same name has been registered previously

    NullArgumentException if specText or any passed test tag is null

    TestRegistrationClosedException if invoked after run has been invoked on this suite

  12. def ScenariosFor(unit: Unit): Unit

    Registers shared scenarios.

    Registers shared scenarios.

    This method enables the following syntax for shared scenarios in a FixtureAsyncFeatureSpec:

    ScenariosFor(nonEmptyStack(lastValuePushed))
    

    This method just provides syntax sugar intended to make the intent of the code clearer. Because the parameter passed to it is type Unit, the expression will be evaluated before being passed, which is sufficient to register the shared scenarios. For examples of shared scenarios, see the Shared scenarios section in the main documentation for trait AnyFeatureSpec.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
  13. def alert: Alerter

    Returns an Alerter that during test execution will forward strings (and other objects) passed to its apply method to the current reporter.

    Returns an Alerter that during test execution will forward strings (and other objects) passed to its apply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while this FixtureAsyncFeatureSpec is being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLikeAlerting
  14. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  15. macro def assert(condition: Boolean, clue: Any)(implicit prettifier: Prettifier, pos: Position): Assertion

    Assert that a boolean condition, described in String message, is true.

    Assert that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestFailedException with a helpful error message appended with the String obtained by invoking toString on the specified clue as the exception's detail message.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assert(a == b, "a good clue")
    • assert(a != b, "a good clue")
    • assert(a === b, "a good clue")
    • assert(a !== b, "a good clue")
    • assert(a > b, "a good clue")
    • assert(a >= b, "a good clue")
    • assert(a < b, "a good clue")
    • assert(a <= b, "a good clue")
    • assert(a startsWith "prefix", "a good clue")
    • assert(a endsWith "postfix", "a good clue")
    • assert(a contains "something", "a good clue")
    • assert(a eq b, "a good clue")
    • assert(a ne b, "a good clue")
    • assert(a > 0 && b > 5, "a good clue")
    • assert(a > 0 || b > 5, "a good clue")
    • assert(a.isEmpty, "a good clue")
    • assert(!a.isEmpty, "a good clue")
    • assert(a.isInstanceOf[String], "a good clue")
    • assert(a.length == 8, "a good clue")
    • assert(a.size == 8, "a good clue")
    • assert(a.exists(_ == 8), "a good clue")

    At this time, any other form of expression will just get a TestFailedException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assert

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null.

    TestFailedException if the condition is false.

  16. macro def assert(condition: Boolean)(implicit prettifier: Prettifier, pos: Position): Assertion

    Assert that a boolean condition is true.

    Assert that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestFailedException.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assert(a == b)
    • assert(a != b)
    • assert(a === b)
    • assert(a !== b)
    • assert(a > b)
    • assert(a >= b)
    • assert(a < b)
    • assert(a <= b)
    • assert(a startsWith "prefix")
    • assert(a endsWith "postfix")
    • assert(a contains "something")
    • assert(a eq b)
    • assert(a ne b)
    • assert(a > 0 && b > 5)
    • assert(a > 0 || b > 5)
    • assert(a.isEmpty)
    • assert(!a.isEmpty)
    • assert(a.isInstanceOf[String])
    • assert(a.length == 8)
    • assert(a.size == 8)
    • assert(a.exists(_ == 8))

    At this time, any other form of expression will get a TestFailedException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assert

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the condition is false.

  17. macro def assertCompiles(code: String)(implicit pos: Position): Assertion

    Asserts that a given string snippet of code passes both the Scala parser and type checker.

    Asserts that a given string snippet of code passes both the Scala parser and type checker.

    You can use this to make sure a snippet of code compiles:

    assertCompiles("val a: Int = 1")
    

    Although assertCompiles is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string compiles, errors (i.e., snippets of code that do not compile) are reported as test failures at runtime.

    code

    the snippet of code that should compile

    Definition Classes
    Assertions
  18. macro def assertDoesNotCompile(code: String)(implicit pos: Position): Assertion

    Asserts that a given string snippet of code does not pass either the Scala parser or type checker.

    Asserts that a given string snippet of code does not pass either the Scala parser or type checker.

    Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's Assertions trait includes the following syntax for that purpose:

    assertDoesNotCompile("val a: String = \"a string")
    

    Although assertDoesNotCompile is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string doesn't compile, errors (i.e., snippets of code that do compile) are reported as test failures at runtime.

    Note that the difference between assertTypeError and assertDoesNotCompile is that assertDoesNotCompile will succeed if the given code does not compile for any reason, whereas assertTypeError will only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example, assertDoesNotCompile will return normally but assertTypeError will throw a TestFailedException.

    code

    the snippet of code that should not type check

    Definition Classes
    Assertions
  19. def assertResult(expected: Any)(actual: Any)(implicit prettifier: Prettifier, pos: Position): Assertion

    Assert that the value passed as expected equals the value passed as actual.

    Assert that the value passed as expected equals the value passed as actual. If the actual value equals the expected value (as determined by ==), assertResult returns normally. Else, assertResult throws a TestFailedException whose detail message includes the expected and actual values.

    expected

    the expected value

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the passed actual value does not equal the passed expected value.

  20. def assertResult(expected: Any, clue: Any)(actual: Any)(implicit prettifier: Prettifier, pos: Position): Assertion

    Assert that the value passed as expected equals the value passed as actual.

    Assert that the value passed as expected equals the value passed as actual. If the actual equals the expected (as determined by ==), assertResult returns normally. Else, if actual is not equal to expected, assertResult throws a TestFailedException whose detail message includes the expected and actual values, as well as the String obtained by invoking toString on the passed clue.

    expected

    the expected value

    clue

    An object whose toString method returns a message to include in a failure report.

    actual

    the actual value, which should equal the passed expected value

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the passed actual value does not equal the passed expected value.

  21. def assertThrows[T <: AnyRef](f: => Any)(implicit classTag: ClassTag[T], pos: Position): Assertion

    Ensure that an expected exception is thrown by the passed function value.

    Ensure that an expected exception is thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns Succeeded. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    Also note that the difference between this method and intercept is that this method does not return the expected exception, so it does not let you perform further assertions on that exception. Instead, this method returns Succeeded, which means it can serve as the last statement in an async- or safe-style suite. It also indicates to the reader of the code that nothing further is expected about the thrown exception other than its type. The recommended usage is to use assertThrows by default, intercept only when you need to inspect the caught exception further.

    f

    the function value that should throw the expected exception

    classTag

    an implicit ClassTag representing the type of the specified type parameter.

    returns

    the Succeeded singleton, if an exception of the expected type is thrown

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the passed function does not complete abruptly with an exception that's an instance of the specified type.

  22. macro def assertTypeError(code: String)(implicit pos: Position): Assertion

    Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.

    Asserts that a given string snippet of code does not pass the Scala type checker, failing if the given snippet does not pass the Scala parser.

    Often when creating libraries you may wish to ensure that certain arrangements of code that represent potential “user errors” do not compile, so that your library is more error resistant. ScalaTest's Assertions trait includes the following syntax for that purpose:

    assertTypeError("val a: String = 1")
    

    Although assertTypeError is implemented with a macro that determines at compile time whether the snippet of code represented by the passed string type checks, errors (i.e., snippets of code that do type check) are reported as test failures at runtime.

    Note that the difference between assertTypeError and assertDoesNotCompile is that assertDoesNotCompile will succeed if the given code does not compile for any reason, whereas assertTypeError will only succeed if the given code does not compile because of a type error. If the given code does not compile because of a syntax error, for example, assertDoesNotCompile will return normally but assertTypeError will throw a TestFailedException.

    code

    the snippet of code that should not type check

    Definition Classes
    Assertions
  23. macro def assume(condition: Boolean, clue: Any)(implicit prettifier: Prettifier, pos: Position): Assertion

    Assume that a boolean condition, described in String message, is true.

    Assume that a boolean condition, described in String message, is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException with a helpful error message appended with String obtained by invoking toString on the specified clue as the exception's detail message.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assume(a == b, "a good clue")
    • assume(a != b, "a good clue")
    • assume(a === b, "a good clue")
    • assume(a !== b, "a good clue")
    • assume(a > b, "a good clue")
    • assume(a >= b, "a good clue")
    • assume(a < b, "a good clue")
    • assume(a <= b, "a good clue")
    • assume(a startsWith "prefix", "a good clue")
    • assume(a endsWith "postfix", "a good clue")
    • assume(a contains "something", "a good clue")
    • assume(a eq b, "a good clue")
    • assume(a ne b, "a good clue")
    • assume(a > 0 && b > 5, "a good clue")
    • assume(a > 0 || b > 5, "a good clue")
    • assume(a.isEmpty, "a good clue")
    • assume(!a.isEmpty, "a good clue")
    • assume(a.isInstanceOf[String], "a good clue")
    • assume(a.length == 8, "a good clue")
    • assume(a.size == 8, "a good clue")
    • assume(a.exists(_ == 8), "a good clue")

    At this time, any other form of expression will just get a TestCanceledException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assume

    clue

    An objects whose toString method returns a message to include in a failure report.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null.

    TestCanceledException if the condition is false.

  24. macro def assume(condition: Boolean)(implicit prettifier: Prettifier, pos: Position): Assertion

    Assume that a boolean condition is true.

    Assume that a boolean condition is true. If the condition is true, this method returns normally. Else, it throws TestCanceledException.

    This method is implemented in terms of a Scala macro that will generate a more helpful error message for expressions of this form:

    • assume(a == b)
    • assume(a != b)
    • assume(a === b)
    • assume(a !== b)
    • assume(a > b)
    • assume(a >= b)
    • assume(a < b)
    • assume(a <= b)
    • assume(a startsWith "prefix")
    • assume(a endsWith "postfix")
    • assume(a contains "something")
    • assume(a eq b)
    • assume(a ne b)
    • assume(a > 0 && b > 5)
    • assume(a > 0 || b > 5)
    • assume(a.isEmpty)
    • assume(!a.isEmpty)
    • assume(a.isInstanceOf[String])
    • assume(a.length == 8)
    • assume(a.size == 8)
    • assume(a.exists(_ == 8))

    At this time, any other form of expression will just get a TestCanceledException with message saying the given expression was false. In the future, we will enhance this macro to give helpful error messages in more situations. In ScalaTest 2.0, however, this behavior was sufficient to allow the === that returns Boolean to be the default in tests. This makes === consistent between tests and production code.

    condition

    the boolean condition to assume

    Definition Classes
    Assertions
    Exceptions thrown

    TestCanceledException if the condition is false.

  25. def cancel(cause: Throwable)(implicit pos: Position): Nothing

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestCanceledException will return cause.toString.

    cause

    a Throwable that indicates the cause of the cancellation.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if cause is null

  26. def cancel(message: String, cause: Throwable)(implicit pos: Position): Nothing

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestCanceledException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message or cause is null

  27. def cancel(message: String)(implicit pos: Position): Nothing

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    Throws TestCanceledException, with the passed String message as the exception's detail message, to indicate a test was canceled.

    message

    A message describing the cancellation.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null

  28. def cancel()(implicit pos: Position): Nothing

    Throws TestCanceledException to indicate a test was canceled.

    Throws TestCanceledException to indicate a test was canceled.

    Definition Classes
    Assertions
  29. def clone(): AnyRef
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.CloneNotSupportedException]) @native()
  30. def complete[T](completeBlock: => T)(implicit futuristic: Futuristic[T]): ResultOfCompleteInvocation[T]

    Registers a block of code that produces any "futuristic" type (any type F for which an implicit Futuristic[F] instance is implicitly available), returning an object that offers a lastly method.

    Registers a block of code that produces any "futuristic" type (any type F for which an implicit Futuristic[F] instance is implicitly available), returning an object that offers a lastly method.

    See the main documentation for trait CompleteLastly for more detail.

    completeBlock

    cleanup code to execute whether the code passed to complete throws an exception or succesfully returns a futuristic value.

    Definition Classes
    CompleteLastly
  31. implicit def convertAssertionToFutureAssertion(assertion: compatible.Assertion): Future[compatible.Assertion]

    Implicitly converts an Assertion to a Future[Assertion].

    Implicitly converts an Assertion to a Future[Assertion].

    This implicit conversion is used to allow synchronous tests to be included along with asynchronous tests in an AsyncTestSuite. It will be

    assertion

    the Assertion to convert

    returns

    a Future[Assertion] that has already completed successfully (containing the Succeeded singleton).

    Definition Classes
    AsyncTestSuite
  32. def convertEquivalenceToAToBConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: <:<[A, B]): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
  33. def convertEquivalenceToBToAConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: <:<[B, A]): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
  34. implicit def convertPendingToFixtureFunction(f: => PendingStatement): (FixtureParam) => compatible.Assertion

    Implicitly converts a function that takes no parameters and results in PendingStatement to a function from FixtureParam to Any, to enable pending tests to registered as by-name parameters by methods that require a test function that takes a FixtureParam.

    Implicitly converts a function that takes no parameters and results in PendingStatement to a function from FixtureParam to Any, to enable pending tests to registered as by-name parameters by methods that require a test function that takes a FixtureParam.

    This method makes it possible to write pending tests as simply (pending), without needing to write (fixture => pending).

    f

    a function

    returns

    a function of FixtureParam => Any

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
  35. def convertToCheckingEqualizer[T](left: T): CheckingEqualizer[T]
    Definition Classes
    TripleEquals → TripleEqualsSupport
  36. implicit def convertToEqualizer[T](left: T): Equalizer[T]
    Definition Classes
    TripleEquals → TripleEqualsSupport
  37. def defaultEquality[A]: Equality[A]
    Definition Classes
    TripleEqualsSupport
  38. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  39. def equals(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef → Any
  40. final def execute(testName: String = null, configMap: ConfigMap = ConfigMap.empty, color: Boolean = true, durations: Boolean = false, shortstacks: Boolean = false, fullstacks: Boolean = false, stats: Boolean = false): Unit

    Executes one or more tests in this Suite, printing results to the standard output.

    Executes one or more tests in this Suite, printing results to the standard output.

    This method invokes run on itself, passing in values that can be configured via the parameters to this method, all of which have default values. This behavior is convenient when working with ScalaTest in the Scala interpreter. Here's a summary of this method's parameters and how you can use them:

    The testName parameter

    If you leave testName at its default value (of null), this method will pass None to the testName parameter of run, and as a result all the tests in this suite will be executed. If you specify a testName, this method will pass Some(testName) to run, and only that test will be run. Thus to run all tests in a suite from the Scala interpreter, you can write:

    scala> (new ExampleSuite).execute()
    

    (The above syntax actually invokes the overloaded parameterless form of execute, which calls this form with its default parameter values.) To run just the test named "my favorite test" in a suite from the Scala interpreter, you would write:

    scala> (new ExampleSuite).execute("my favorite test")
    

    Or:

    scala> (new ExampleSuite).execute(testName = "my favorite test")
    

    The configMap parameter

    If you provide a value for the configMap parameter, this method will pass it to run. If not, the default value of an empty Map will be passed. For more information on how to use a config map to configure your test suites, see the config map section in the main documentation for this trait. Here's an example in which you configure a run with the name of an input file:

    scala> (new ExampleSuite).execute(configMap = Map("inputFileName" -> "in.txt")
    

    The color parameter

    If you leave the color parameter unspecified, this method will configure the reporter it passes to run to print to the standard output in color (via ansi escape characters). If you don't want color output, specify false for color, like this:

    scala> (new ExampleSuite).execute(color = false)
    

    The durations parameter

    If you leave the durations parameter unspecified, this method will configure the reporter it passes to run to not print durations for tests and suites to the standard output. If you want durations printed, specify true for durations, like this:

    scala> (new ExampleSuite).execute(durations = true)
    

    The shortstacks and fullstacks parameters

    If you leave both the shortstacks and fullstacks parameters unspecified, this method will configure the reporter it passes to run to not print stack traces for failed tests if it has a stack depth that identifies the offending line of test code. If you prefer a short stack trace (10 to 15 stack frames) to be printed with any test failure, specify true for shortstacks:

    scala> (new ExampleSuite).execute(shortstacks = true)
    

    For full stack traces, set fullstacks to true:

    scala> (new ExampleSuite).execute(fullstacks = true)
    

    If you specify true for both shortstacks and fullstacks, you'll get full stack traces.

    The stats parameter

    If you leave the stats parameter unspecified, this method will not fire RunStarting and either RunCompleted or RunAborted events to the reporter it passes to run. If you specify true for stats, this method will fire the run events to the reporter, and the reporter will print the expected test count before the run, and various statistics after, including the number of suites completed and number of tests that succeeded, failed, were ignored or marked pending. Here's how you get the stats:

    scala> (new ExampleSuite).execute(stats = true)
    

    To summarize, this method will pass to run:

    • testName - None if this method's testName parameter is left at its default value of null, else Some(testName).
    • reporter - a reporter that prints to the standard output
    • stopper - a Stopper whose apply method always returns false
    • filter - a Filter constructed with None for tagsToInclude and Set() for tagsToExclude
    • configMap - the configMap passed to this method
    • distributor - None
    • tracker - a new Tracker

    Note: In ScalaTest, the terms "execute" and "run" basically mean the same thing and can be used interchangably. The reason this method isn't named run is that it takes advantage of default arguments, and you can't mix overloaded methods and default arguments in Scala. (If named run, this method would have the same name but different arguments than the main run method that takes seven arguments. Thus it would overload and couldn't be used with default argument values.)

    Design note: This method has two "features" that may seem unidiomatic. First, the default value of testName is null. Normally in Scala the type of testName would be Option[String] and the default value would be None, as it is in this trait's run method. The null value is used here for two reasons. First, in ScalaTest 1.5, execute was changed from four overloaded methods to one method with default values, taking advantage of the default and named parameters feature introduced in Scala 2.8. To not break existing source code, testName needed to have type String, as it did in two of the overloaded execute methods prior to 1.5. The other reason is that execute has always been designed to be called primarily from an interpeter environment, such as the Scala REPL (Read-Evaluate-Print-Loop). In an interpreter environment, minimizing keystrokes is king. A String type with a null default value lets users type suite.execute("my test name") rather than suite.execute(Some("my test name")), saving several keystrokes.

    The second non-idiomatic feature is that shortstacks and fullstacks are all lower case rather than camel case. This is done to be consistent with the Shell, which also uses those forms. The reason lower case is used in the Shell is to save keystrokes in an interpreter environment. Most Unix commands, for example, are all lower case, making them easier and quicker to type. In the ScalaTest Shell, methods like shortstacks, fullstacks, and nostats, etc., are designed to be all lower case so they feel more like shell commands than methods.

    testName

    the name of one test to run.

    configMap

    a Map of key-value pairs that can be used by the executing Suite of tests.

    color

    a boolean that configures whether output is printed in color

    durations

    a boolean that configures whether test and suite durations are printed to the standard output

    shortstacks

    a boolean that configures whether short stack traces should be printed for test failures

    fullstacks

    a boolean that configures whether full stack traces should be printed for test failures

    stats

    a boolean that configures whether test and suite statistics are printed to the standard output

    Definition Classes
    Suite
    Exceptions thrown

    IllegalArgumentException if testName is defined, but no test with the specified test name exists in this Suite

    NullArgumentException if the passed configMap parameter is null.

  41. implicit def executionContext: ExecutionContext
    Definition Classes
    AsyncTestSuite
  42. def expectedTestCount(filter: Filter): Int

    The total number of tests that are expected to run when this Suite's run method is invoked.

    The total number of tests that are expected to run when this Suite's run method is invoked.

    This trait's implementation of this method returns the sum of:

    • the size of the testNames List, minus the number of tests marked as ignored and any tests that are exluded by the passed Filter
    • the sum of the values obtained by invoking expectedTestCount on every nested Suite contained in nestedSuites
    filter

    a Filter with which to filter tests to count based on their tags

    Definition Classes
    Suite
  43. def fail(cause: Throwable)(implicit pos: Position): Nothing

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed Throwable cause, to indicate a test failed. The getMessage method of the thrown TestFailedException will return cause.toString.

    cause

    a Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if cause is null

  44. def fail(message: String, cause: Throwable)(implicit pos: Position): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message and Throwable cause, to indicate a test failed.

    message

    A message describing the failure.

    cause

    A Throwable that indicates the cause of the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message or cause is null

  45. def fail(message: String)(implicit pos: Position): Nothing

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    Throws TestFailedException, with the passed String message as the exception's detail message, to indicate a test failed.

    message

    A message describing the failure.

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if message is null

  46. def fail()(implicit pos: Position): Nothing

    Throws TestFailedException to indicate a test failed.

    Throws TestFailedException to indicate a test failed.

    Definition Classes
    Assertions
  47. def finalize(): Unit
    Attributes
    protected[lang]
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.Throwable])
  48. final def getClass(): Class[_ <: AnyRef]
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  49. def hashCode(): Int
    Definition Classes
    AnyRef → Any
    Annotations
    @native()
  50. def ignore(specText: String, testTags: Tag*): ResultOfIgnoreInvocation

    Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments.

    Register a test to ignore, which has the given spec text, optional tags, and test function value that takes no arguments. This method will register the test for later ignoring via an invocation of one of the execute methods. This method exists to make it easy to ignore an existing test by changing the call to it to ignore without deleting or commenting out the actual test code. The test will not be executed, but a report will be sent that indicates the test was ignored. The name of the test will be a concatenation of the text of all surrounding describers, from outside in, and the passed spec text, with one space placed between each item. (See the documenation for testNames for an example.) The resulting test name must not have been registered previously on this FixtureAsyncFeatureSpec instance.

    specText

    the specification text, which will be combined with the descText of any surrounding describers to form the test name

    testTags

    the optional list of tags for this test

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
    Exceptions thrown

    DuplicateTestNameException if a test with the same name has been registered previously

    NullArgumentException if specText or any passed test tag is null

    TestRegistrationClosedException if invoked after run has been invoked on this suite

  51. def info: Informer

    Returns an Informer that during test execution will forward strings passed to its apply method to the current reporter.

    Returns an Informer that during test execution will forward strings passed to its apply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked from inside a scope, it will forward the information to the current reporter immediately. If invoked from inside a test function, it will record the information and forward it to the current reporter only after the test completed, as recordedEvents of the test completed event, such as TestSucceeded. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLikeInforming
  52. def intercept[T <: AnyRef](f: => Any)(implicit classTag: ClassTag[T], pos: Position): T

    Intercept and return an exception that's expected to be thrown by the passed function value.

    Intercept and return an exception that's expected to be thrown by the passed function value. The thrown exception must be an instance of the type specified by the type parameter of this method. This method invokes the passed function. If the function throws an exception that's an instance of the specified type, this method returns that exception. Else, whether the passed function returns normally or completes abruptly with a different exception, this method throws TestFailedException.

    Note that the type specified as this method's type parameter may represent any subtype of AnyRef, not just Throwable or one of its subclasses. In Scala, exceptions can be caught based on traits they implement, so it may at times make sense to specify a trait that the intercepted exception's class must mix in. If a class instance is passed for a type that could not possibly be used to catch an exception (such as String, for example), this method will complete abruptly with a TestFailedException.

    Also note that the difference between this method and assertThrows is that this method returns the expected exception, so it lets you perform further assertions on that exception. By contrast, the assertThrows method returns Succeeded, which means it can serve as the last statement in an async- or safe-style suite. assertThrows also indicates to the reader of the code that nothing further is expected about the thrown exception other than its type. The recommended usage is to use assertThrows by default, intercept only when you need to inspect the caught exception further.

    f

    the function value that should throw the expected exception

    classTag

    an implicit ClassTag representing the type of the specified type parameter.

    returns

    the intercepted exception, if it is of the expected type

    Definition Classes
    Assertions
    Exceptions thrown

    TestFailedException if the passed function does not complete abruptly with an exception that's an instance of the specified type.

  53. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  54. def lowPriorityTypeCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], ev: <:<[A, B]): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
  55. def markup: Documenter

    Returns a Documenter that during test execution will forward strings passed to its apply method to the current reporter.

    Returns a Documenter that during test execution will forward strings passed to its apply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked from inside a scope, it will forward the information to the current reporter immediately. If invoked from inside a test function, it will record the information and forward it to the current reporter only after the test completed, as recordedEvents of the test completed event, such as TestSucceeded. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLikeDocumenting
  56. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  57. def nestedSuites: IndexedSeq[Suite]

    An immutable IndexedSeq of this Suite object's nested Suites.

    An immutable IndexedSeq of this Suite object's nested Suites. If this Suite contains no nested Suites, this method returns an empty IndexedSeq. This trait's implementation of this method returns an empty List.

    Definition Classes
    Suite
  58. def note: Notifier

    Returns a Notifier that during test execution will forward strings (and other objects) passed to its apply method to the current reporter.

    Returns a Notifier that during test execution will forward strings (and other objects) passed to its apply method to the current reporter. If invoked in a constructor, it will register the passed string for forwarding later during test execution. If invoked while this FixtureAsyncFeatureSpec is being executed, such as from inside a test function, it will forward the information to the current reporter immediately. If invoked at any other time, it will print to the standard output. This method can be called safely by any thread.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLikeNotifying
  59. final def notify(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  60. final def notifyAll(): Unit
    Definition Classes
    AnyRef
    Annotations
    @native()
  61. def parallelAsyncTestExecution: Boolean
    Attributes
    protected[scalatest]
    Definition Classes
    AsyncTestSuite
  62. def pending: Assertion with PendingStatement

    Throws TestPendingException to indicate a test is pending.

    Throws TestPendingException to indicate a test is pending.

    A pending test is one that has been given a name but is not yet implemented. The purpose of pending tests is to facilitate a style of testing in which documentation of behavior is sketched out before tests are written to verify that behavior (and often, the before the behavior of the system being tested is itself implemented). Such sketches form a kind of specification of what tests and functionality to implement later.

    To support this style of testing, a test can be given a name that specifies one bit of behavior required by the system being tested. The test can also include some code that sends more information about the behavior to the reporter when the tests run. At the end of the test, it can call method pending, which will cause it to complete abruptly with TestPendingException. Because tests in ScalaTest can be designated as pending with TestPendingException, both the test name and any information sent to the reporter when running the test can appear in the report of a test run. (In other words, the code of a pending test is executed just like any other test.) However, because the test completes abruptly with TestPendingException, the test will be reported as pending, to indicate the actual test, and possibly the functionality it is intended to test, has not yet been implemented.

    Note: This method always completes abruptly with a TestPendingException. Thus it always has a side effect. Methods with side effects are usually invoked with parentheses, as in pending(). This method is defined as a parameterless method, in flagrant contradiction to recommended Scala style, because it forms a kind of DSL for pending tests. It enables tests in suites such as FunSuite or FunSpec to be denoted by placing "(pending)" after the test name, as in:

    test("that style rules are not laws") (pending)
    

    Readers of the code see "pending" in parentheses, which looks like a little note attached to the test name to indicate it is pending. Whereas "(pending()) looks more like a method call, "(pending)" lets readers stay at a higher level, forgetting how it is implemented and just focusing on the intent of the programmer who wrote the code.

    Definition Classes
    Assertions
  63. def pendingUntilFixed(f: => Unit)(implicit pos: Position): Assertion with PendingStatement

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    Execute the passed block of code, and if it completes abruptly, throw TestPendingException, else throw TestFailedException.

    This method can be used to temporarily change a failing test into a pending test in such a way that it will automatically turn back into a failing test once the problem originally causing the test to fail has been fixed. At that point, you need only remove the pendingUntilFixed call. In other words, a pendingUntilFixed surrounding a block of code that isn't broken is treated as a test failure. The motivation for this behavior is to encourage people to remove pendingUntilFixed calls when there are no longer needed.

    This method facilitates a style of testing in which tests are written before the code they test. Sometimes you may encounter a test failure that requires more functionality than you want to tackle without writing more tests. In this case you can mark the bit of test code causing the failure with pendingUntilFixed. You can then write more tests and functionality that eventually will get your production code to a point where the original test won't fail anymore. At this point the code block marked with pendingUntilFixed will no longer throw an exception (because the problem has been fixed). This will in turn cause pendingUntilFixed to throw TestFailedException with a detail message explaining you need to go back and remove the pendingUntilFixed call as the problem orginally causing your test code to fail has been fixed.

    f

    a block of code, which if it completes abruptly, should trigger a TestPendingException

    Definition Classes
    Assertions
    Exceptions thrown

    TestPendingException if the passed block of code completes abruptly with an Exception or AssertionError

  64. def recoverToExceptionIf[T <: AnyRef](future: Future[Any])(implicit classTag: ClassTag[T], exCtx: ExecutionContext, pos: Position): Future[T]

    Transforms a future of any type into a Future[T], where T is a given expected exception type, which succeeds if the given future completes with a Failure containing the specified exception type.

    Transforms a future of any type into a Future[T], where T is a given expected exception type, which succeeds if the given future completes with a Failure containing the specified exception type.

    See the main documentation for this trait for more detail and examples.

    future

    A future of any type, which you expect to fail with an exception of the specified type T

    returns

    a Future[T] containing on success the expected exception, or containing on failure a TestFailedException

    Definition Classes
    RecoverMethods
  65. def recoverToSucceededIf[T <: AnyRef](future: Future[Any])(implicit classTag: ClassTag[T], exCtx: ExecutionContext, pos: Position): Future[compatible.Assertion]

    Transforms a future of any type into a Future[Assertion] that succeeds if the future completes with a Failure containing the specified exception type.

    Transforms a future of any type into a Future[Assertion] that succeeds if the future completes with a Failure containing the specified exception type.

    See the main documentation for this trait for more detail and examples.

    future

    A future of any type, which you expect to fail with an exception of the specified type T

    returns

    a Future[Assertion] containing on success the Succeeded singleton, or containing on failure a TestFailedException

    Definition Classes
    RecoverMethods
  66. final def registerAsyncTest(testText: String, testTags: Tag*)(testFun: (FixtureParam) => Future[compatible.Assertion])(implicit pos: Position): Unit

    Registers a test.

    Registers a test.

    testText

    the test text

    testTags

    the test tags

    testFun

    the test function

    Definition Classes
    FixtureAsyncFeatureSpecLikeFixtureAsyncTestRegistration
  67. final def registerIgnoredAsyncTest(testText: String, testTags: Tag*)(testFun: (FixtureParam) => Future[compatible.Assertion])(implicit pos: Position): Unit

    Registers an ignored test.

    Registers an ignored test.

    testText

    the test text

    testTags

    the test tags

    testFun

    the test function

    Definition Classes
    FixtureAsyncFeatureSpecLikeFixtureAsyncTestRegistration
  68. def rerunner: Option[String]

    The fully qualified class name of the rerunner to rerun this suite.

    The fully qualified class name of the rerunner to rerun this suite. This implementation will look at this.getClass and see if it is either an accessible Suite, or it has a WrapWith annotation. If so, it returns the fully qualified class name wrapped in a Some, or else it returns None.

    Definition Classes
    Suite
  69. def run(testName: Option[String], args: Args): Status

    Runs this suite of tests.

    Runs this suite of tests.

    If testName is None, this trait's implementation of this method calls these two methods on this object in this order:

    • runNestedSuites
    • runTests

    If testName is defined, then this trait's implementation of this method calls runTests, but does not call runNestedSuites. This behavior is part of the contract of this method. Subclasses that override run must take care not to call runNestedSuites if testName is defined. (The OneInstancePerTest trait depends on this behavior, for example.)

    Subclasses and subtraits that override this run method can implement them without invoking either the runTests or runNestedSuites methods, which are invoked by this trait's implementation of this method. It is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runNestedSuites also override runNestedSuites and make it final. Similarly it is recommended, but not required, that subclasses and subtraits that override run in a way that does not invoke runTests also override runTests (and runTest, which this trait's implementation of runTests calls) and make it final. The implementation of these final methods can either invoke the superclass implementation of the method, or throw an UnsupportedOperationException if appropriate. The reason for this recommendation is that ScalaTest includes several traits that override these methods to allow behavior to be mixed into a Suite. For example, trait BeforeAndAfterEach overrides runTestss. In a Suite subclass that no longer invokes runTests from run, the BeforeAndAfterEach trait is not applicable. Mixing it in would have no effect. By making runTests final in such a Suite subtrait, you make the attempt to mix BeforeAndAfterEach into a subclass of your subtrait a compiler error. (It would fail to compile with a complaint that BeforeAndAfterEach is trying to override runTests, which is a final method in your trait.)

    testName

    an optional name of one test to run. If None, all relevant tests should be run. I.e., None acts like a wildcard that means run all relevant tests in this Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests and nested suites started by this method have completed, and whether or not a failure occurred.

    Definition Classes
    FixtureAsyncFeatureSpecLikeSuite
    Exceptions thrown

    IllegalArgumentException if testName is defined, but no test with the specified test name exists in this Suite

    NullArgumentException if any passed parameter is null.

  70. def runNestedSuites(args: Args): Status

    Run zero to many of this Suite's nested Suites.

    Run zero to many of this Suite's nested Suites.

    If the passed distributor is None, this trait's implementation of this method invokes run on each nested Suite in the List obtained by invoking nestedSuites. If a nested Suite's run method completes abruptly with an exception, this trait's implementation of this method reports that the Suite aborted and attempts to run the next nested Suite. If the passed distributor is defined, this trait's implementation puts each nested Suite into the Distributor contained in the Some, in the order in which the Suites appear in the List returned by nestedSuites, passing in a new Tracker obtained by invoking nextTracker on the Tracker passed to this method.

    Implementations of this method are responsible for ensuring SuiteStarting events are fired to the Reporter before executing any nested Suite, and either SuiteCompleted or SuiteAborted after executing any nested Suite.

    args

    the Args for this run

    returns

    a Status object that indicates when all nested suites started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    Suite
    Exceptions thrown

    NullArgumentException if any passed parameter is null.

  71. def runTest(testName: String, args: Args): Status

    Run a test.

    Run a test. This trait's implementation runs the test registered with the name specified by testName. Each test's name is a concatenation of the text of all describers surrounding a test, from outside in, and the test's spec text, with one space placed between each item. (See the documenation for testNames for an example.)

    testName

    the name of one test to execute.

    args

    the Args for this run

    returns

    a Status object that indicates when the test started by this method has completed, and whether or not it failed .

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLikeAsyncTestSuiteSuite
    Exceptions thrown

    NullArgumentException if testName, reporter, stopper, or configMap is null.

  72. def runTests(testName: Option[String], args: Args): Status

    Run zero to many of this FixtureAsyncFeatureSpec's tests.

    Run zero to many of this FixtureAsyncFeatureSpec's tests.

    This method takes a testName parameter that optionally specifies a test to invoke. If testName is Some, this trait's implementation of this method invokes runTest on this object with passed args.

    This method takes an args that contains a Set of tag names that should be included (tagsToInclude), and a Set that should be excluded (tagsToExclude), when deciding which of this Suite's tests to execute. If tagsToInclude is empty, all tests will be executed except those those belonging to tags listed in the tagsToExclude Set. If tagsToInclude is non-empty, only tests belonging to tags mentioned in tagsToInclude, and not mentioned in tagsToExclude will be executed. However, if testName is Some, tagsToInclude and tagsToExclude are essentially ignored. Only if testName is None will tagsToInclude and tagsToExclude be consulted to determine which of the tests named in the testNames Set should be run. For more information on trait tags, see the main documentation for this trait.

    If testName is None, this trait's implementation of this method invokes testNames on this Suite to get a Set of names of tests to potentially execute. (A testNames value of None essentially acts as a wildcard that means all tests in this Suite that are selected by tagsToInclude and tagsToExclude should be executed.) For each test in the testName Set, in the order they appear in the iterator obtained by invoking the elements method on the Set, this trait's implementation of this method checks whether the test should be run based on the tagsToInclude and tagsToExclude Sets. If so, this implementation invokes runTest with passed in args.

    testName

    an optional name of one test to execute. If None, all relevant tests should be executed. I.e., None acts like a wildcard that means execute all relevant tests in this FixtureAsyncFeatureSpec.

    args

    the Args for this run

    returns

    a Status object that indicates when all tests started by this method have completed, and whether or not a failure occurred.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLikeSuite
    Exceptions thrown

    NullArgumentException if any of testName or args is null.

  73. final val succeed: Assertion

    The Succeeded singleton.

    The Succeeded singleton.

    You can use succeed to solve a type error when an async test does not end in either Future[Assertion] or Assertion. Because Assertion is a type alias for Succeeded.type, putting succeed at the end of a test body (or at the end of a function being used to map the final future of a test body) will solve the type error.

    Definition Classes
    Assertions
  74. def suiteId: String

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    A string ID for this Suite that is intended to be unique among all suites reported during a run.

    This trait's implementation of this method returns the fully qualified name of this object's class. Each suite reported during a run will commonly be an instance of a different Suite class, and in such cases, this default implementation of this method will suffice. However, in special cases you may need to override this method to ensure it is unique for each reported suite. For example, if you write a Suite subclass that reads in a file whose name is passed to its constructor and dynamically creates a suite of tests based on the information in that file, you will likely need to override this method in your Suite subclass, perhaps by appending the pathname of the file to the fully qualified class name. That way if you run a suite of tests based on a directory full of these files, you'll have unique suite IDs for each reported suite.

    The suite ID is intended to be unique, because ScalaTest does not enforce that it is unique. If it is not unique, then you may not be able to uniquely identify a particular test of a particular suite. This ability is used, for example, to dynamically tag tests as having failed in the previous run when rerunning only failed tests.

    returns

    this Suite object's ID.

    Definition Classes
    Suite
  75. def suiteName: String

    A user-friendly suite name for this Suite.

    A user-friendly suite name for this Suite.

    This trait's implementation of this method returns the simple name of this object's class. This trait's implementation of runNestedSuites calls this method to obtain a name for Reports to pass to the suiteStarting, suiteCompleted, and suiteAborted methods of the Reporter.

    returns

    this Suite object's suite name.

    Definition Classes
    Suite
  76. final def synchronized[T0](arg0: => T0): T0
    Definition Classes
    AnyRef
  77. def tags: Map[String, Set[String]]

    A Map whose keys are String tag names to which tests in this FixtureAsyncFeatureSpec belong, and values the Set of test names that belong to each tag.

    A Map whose keys are String tag names to which tests in this FixtureAsyncFeatureSpec belong, and values the Set of test names that belong to each tag. If this FixtureAsyncFeatureSpec contains no tags, this method returns an empty Map.

    This trait's implementation returns tags that were passed as strings contained in Tag objects passed to methods test and ignore.

    In addition, this trait's implementation will also auto-tag tests with class level annotations. For example, if you annotate @Ignore at the class level, all test methods in the class will be auto-annotated with @Ignore.

    Definition Classes
    FixtureAsyncFeatureSpecLikeSuite
  78. def testDataFor(testName: String, theConfigMap: ConfigMap = ConfigMap.empty): TestData

    Provides a TestData instance for the passed test name, given the passed config map.

    Provides a TestData instance for the passed test name, given the passed config map.

    This method is used to obtain a TestData instance to pass to withFixture(NoArgTest) and withFixture(OneArgTest) and the beforeEach and afterEach methods of trait BeforeAndAfterEach.

    testName

    the name of the test for which to return a TestData instance

    theConfigMap

    the config map to include in the returned TestData

    returns

    a TestData instance for the specified test, which includes the specified config map

    Definition Classes
    FixtureAsyncFeatureSpecLikeSuite
  79. def testNames: Set[String]

    An immutable Set of test names.

    An immutable Set of test names. If this FixtureAsyncFeatureSpec contains no tests, this method returns an empty Set.

    This trait's implementation of this method will return a set that contains the names of all registered tests. The set's iterator will return those names in the order in which the tests were registered. Each test's name is composed of the concatenation of the text of each surrounding describer, in order from outside in, and the text of the example itself, with all components separated by a space.

    returns

    the Set of test names

    Definition Classes
    FixtureAsyncFeatureSpecLikeSuite
  80. def toString(): String

    Returns a user friendly string for this suite, composed of the simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite contains nested suites, the result of invoking toString on each of the nested suites, separated by commas and surrounded by parentheses.

    Returns a user friendly string for this suite, composed of the simple name of the class (possibly simplified further by removing dollar signs if added by the Scala interpeter) and, if this suite contains nested suites, the result of invoking toString on each of the nested suites, separated by commas and surrounded by parentheses.

    returns

    a user-friendly string for this suite

    Definition Classes
    FixtureAsyncFeatureSpec → AnyRef → Any
  81. def typeCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], ev: <:<[B, A]): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
  82. implicit def unconstrainedEquality[A, B](implicit equalityOfA: Equality[A]): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
  83. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  84. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException])
  85. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws(classOf[java.lang.InterruptedException]) @native()
  86. def withClue[T](clue: Any)(fun: => T): T

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it.

    Executes the block of code passed as the second parameter, and, if it completes abruptly with a ModifiableMessage exception, prepends the "clue" string passed as the first parameter to the beginning of the detail message of that thrown exception, then rethrows it. If clue does not end in a white space character, one space will be added between it and the existing detail message (unless the detail message is not defined).

    This method allows you to add more information about what went wrong that will be reported when a test fails. Here's an example:

    withClue("(Employee's name was: " + employee.name + ")") {
      intercept[IllegalArgumentException] {
        employee.getTask(-1)
      }
    }
    

    If an invocation of intercept completed abruptly with an exception, the resulting message would be something like:

    (Employee's name was Bob Jones) Expected IllegalArgumentException to be thrown, but no exception was thrown
    

    Definition Classes
    Assertions
    Exceptions thrown

    NullArgumentException if the passed clue is null

  87. def withFixture(test: NoArgAsyncTest): FutureOutcome

    Run the passed test function in the context of a fixture established by this method.

    Run the passed test function in the context of a fixture established by this method.

    This method should set up the fixture needed by the tests of the current suite, invoke the test function, and if needed, register a callback on the resulting FutureOutcome to perform any clean up needed after the test completes. Because the NoArgAsyncTest function passed to this method takes no parameters, preparing the fixture will require side effects, such as reassigning instance vars in this Suite or initializing a globally accessible external database. If you want to avoid reassigning instance vars you can use FixtureAsyncTestSuite.

    This trait's implementation of runTest invokes this method for each test, passing in a NoArgAsyncTest whose apply method will execute the code of the test and returns its result.

    This trait's implementation of this method simply invokes the passed NoArgAsyncTest function.

    test

    the no-arg async test function to run with a fixture

    Definition Classes
    AsyncTestSuite

Deprecated Value Members

  1. def conversionCheckedConstraint[A, B](implicit equivalenceOfA: Equivalence[A], cnv: (B) => A): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The conversionCheckedConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.

  2. def convertEquivalenceToAToBConversionConstraint[A, B](equivalenceOfB: Equivalence[B])(implicit ev: (A) => B): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The convertEquivalenceToAToBConversionConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.

  3. def convertEquivalenceToBToAConversionConstraint[A, B](equivalenceOfA: Equivalence[A])(implicit ev: (B) => A): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The convertEquivalenceToBToAConversionConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.

  4. def feature(description: String)(fun: => Unit)(implicit pos: Position): Unit

    The feature (starting with lowercase 'f') method has been deprecated and will be removed in a future version of ScalaTest. Please use Feature (starting with an uppercase 'F') instead.

    The feature (starting with lowercase 'f') method has been deprecated and will be removed in a future version of ScalaTest. Please use Feature (starting with an uppercase 'F') instead.

    This method has been renamed for consistency with ScalaTest's Given, When, and Then methods, which were changed to uppper case when Scala deprecated then as an identifier, and Cucumber, one of the main original inspirations for FeatureSpec.

    This can be rewritten automatically with autofix: https://github.com/scalatest/autofix/tree/master/3.1.x.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The feature (starting with lowercase 'f') method has been deprecated and will be removed in a future version of ScalaTest. Please use Feature (starting with an uppercase 'F') instead. This can be rewritten automatically with autofix: https://github.com/scalatest/autofix/tree/master/3.1.x

  5. def lowPriorityConversionCheckedConstraint[A, B](implicit equivalenceOfB: Equivalence[B], cnv: (A) => B): CanEqual[A, B]
    Definition Classes
    TripleEquals → TripleEqualsSupport
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The lowPriorityConversionCheckedConstraint method has been deprecated and will be removed in a future version of ScalaTest. It is no longer needed now that the deprecation period of ConversionCheckedTripleEquals has expired. It will not be replaced.

  6. def scenario(specText: String, testTags: Tag*): ResultOfScenarioInvocation

    The scenario (starting with lowercase 's') method has been deprecated and will be removed in a future version of ScalaTest. Please use Scenario (starting with an uppercase 'S') instead.

    The scenario (starting with lowercase 's') method has been deprecated and will be removed in a future version of ScalaTest. Please use Scenario (starting with an uppercase 'S') instead.

    This method has been renamed for consistency with ScalaTest's Given, When, and Then methods, which were changed to uppper case when Scala deprecated then as an identifier, and Cucumber, one of the main original inspirations for FeatureSpec.

    This can be rewritten automatically with autofix: https://github.com/scalatest/autofix/tree/master/3.1.x.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The scenario (starting with lowercase 's') method has been deprecated and will be removed in a future version of ScalaTest. Please use Scenario (starting with an uppercase 'S') instead. This can be rewritten automatically with autofix: https://github.com/scalatest/autofix/tree/master/3.1.x

  7. def scenariosFor(unit: Unit): Unit

    The scenariosFor (starting with lowercase 's') method has been deprecated and will be removed in a future version of ScalaTest. Please use ScenariosFor (starting with an uppercase 'S') instead.

    The scenariosFor (starting with lowercase 's') method has been deprecated and will be removed in a future version of ScalaTest. Please use ScenariosFor (starting with an uppercase 'S') instead.

    This method has been renamed for consistency with ScalaTest's Given, When, and Then methods, which were changed to uppper case when Scala deprecated then as an identifier, and Cucumber, one of the main original inspirations for FeatureSpec.

    This can be rewritten automatically with autofix: https://github.com/scalatest/autofix/tree/master/3.1.x.

    Attributes
    protected
    Definition Classes
    FixtureAsyncFeatureSpecLike
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The scenariosFor (starting with lowercase 's') method has been deprecated and will be removed in a future version of ScalaTest. Please use ScenariosFor (starting with an uppercase 'S') instead. This can be rewritten automatically with autofix: https://github.com/scalatest/autofix/tree/master/3.1.x

  8. final val styleName: String

    The styleName lifecycle method has been deprecated and will be removed in a future version of ScalaTest.

    The styleName lifecycle method has been deprecated and will be removed in a future version of ScalaTest.

    This method was used to support the chosen styles feature, which was deactivated in 3.1.0. The internal modularization of ScalaTest in 3.2.0 will replace chosen styles as the tool to encourage consistency across a project. We do not plan a replacement for styleName.

    Definition Classes
    FixtureAsyncFeatureSpecLikeFixtureSuiteSuite
    Annotations
    @deprecated
    Deprecated

    (Since version 3.1.0) The styleName lifecycle method has been deprecated and will be removed in a future version of ScalaTest with no replacement.

Inherited from Documenting

Inherited from Alerting

Inherited from Notifying

Inherited from Informing

Inherited from FixtureAsyncTestSuite

Inherited from AsyncTestSuite

Inherited from CompleteLastly

Inherited from RecoverMethods

Inherited from FixtureSuite

Inherited from Suite

Inherited from Serializable

Inherited from Assertions

Inherited from TripleEquals

Inherited from TripleEqualsSupport

Inherited from AnyRef

Inherited from Any

Ungrouped